
G13GAM—Game Theory (Solutions)

Note: These solutions should (of course) be read in conjunction with the questions. They form an
integral part of the module, and should give you a lot of additional information about the content of the
module, specifically about recommended ways of attacking problems—including the exam!

1 (a ) Successively we have e = − min(0, − 10) = 10, f = 19, g = − min(−12,0,12) = 12, b =
− min(10,19,12) = − 10, h = 50, i = 74, j = 60, c = − min(50,74,60) = − 50, k = − 30, l = 0,
d = 30, a = − min( − 10, − 50,30) = 50.

(b ) Start at a with bounds − ∞ and + ∞.
Visit b with bounds − ∞ and + ∞.

Visit e with bounds − ∞ and + ∞.
e1 returns 0, e2 returns − 10, so e returns 10 to b .

α < − 10 < β , so reset b ’s bounds to − 10 and + ∞.
Visit f with bounds − ∞ and 10.

f1 returns − 19, so f returns 19 to b .
− 19 < − 10, so visit g with bounds − ∞ and 10.

g1 returns − 12, and 12 > 10, so return 12 to b ; g2, g3 not visited.
b returns − 10 to a ; so reset a ’s bounds to 10 and + ∞.
Visit c with bounds − ∞ and − 10.

Visit h with bounds 10 and + ∞.
h1 returns − 50 to h , so

h returns 50 to c .
− 50 > − ∞, so reset c ’s bounds to − 50 and − 10.

Visit i with bounds 10 and 50.
i1 returns − 74, and 74 > 50, so return 74 to c ; i2 is not visited.

− 74 is below c ’s floor, so visit j with bounds 10 and 50.
j1 returns − 60, so j2 isn’t visited and j returns 60 to c .

c returns − 50 to a , so reset a ’s bounds to 50 and + ∞.
Visit d with bounds − ∞ and − 50.

Visit k with bounds 50 and + ∞.
k1, k2, k3 return 60, 30, 50, so k returns − 30 to d .

30 > − 50, so d returns 30 to a ; l is not visited.
a returns 50 as its value.

(c ) Note that the α − β bounds will always be 40 at the top and third levels of the tree, − 40 at second
and bottom. We visit b , e , e1 and e2, evaluating e as 10, as before. Since − 10 > − 40, we get a
β -cutoff at b , and f and g are not visited; the value of b is at least − 10, so is not interesting to a .
The returned value of − 10 from b to a negates to 10, which is below a ’s floor, so we visit c , h
and h1, evaluating h as 50, as before. Since − 50 is below c ’s floor, we visit i and i1; the
returned value of − 74 causes a cutoff at i , the value of i is at least 74 and will not be interesting to
c . The returned value of − 60 when we visit j1 from j similarly causes a cutoff, so c returns − 50,
meaning that (since this is below the floor) the value at c is at best − 50. This value negates to 50
at a , which causes a cutoff, and d is not visited. The returned value from a is 50, meaning ‘at
least 50’, as it is above the ceiling.

OK, now you understand all this, here is your follow-up question. Re-arrange the search order so
as to minimise the number of nodes that need to be searched; that is, how many nodes absolutely must
be searched in order to establish the value of the root?

2 Cases (a ), (c ) and (e ) are where the result is correct, and no re-search will be necessary. Cases (b ) and
(d ) are where you’ve been caught out, and the result γ is related to the wrong levels. In case (a ), as
γ < α , the value returned is an upper bound [which probably resulted from a β -cutoff, though with the
wrong β ]. No action needs to be taken.
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In case (b ), the value is again an upper bound, but because this falls between the true α and the ‘wrong’
α ′ , we don’t know how γ relates to α . So we need to do a re-search with bounds α and γ to find an
exact result [if the second search comes in between α and γ ] or a useful upper bound [if it comes in
below α . With luck, this will be fast, as there should be a smaller window and as many positions will
have useful values in the transposition table. If it does come in above α , then we can proceed as in (c ),
if below then as in (a ).

In case (c ), γ is a true return from the search. We can raise α [and α ′ ] to γ for the remaining moves at
this node, and if this remains the best move, we can safely return γ as the value of this node. No other
action is necessary.

In case (d ), there is a β -cutoff, but with the wrong value of β . In other words, our child’s value came
back below its floor, presumably as a result of β -cutoffs in the grand-children, but using β ′ . We know
the true value is at least γ , but not how it relates to β , so a re-search is necessary with bounds γ and β .
This will return with either a true value [below β ], and we can then proceed as in (c ), or a lower bound
[above β ], and we can proceed as in (e ).

Finally, in case (e ), there is a β -cutoff, and although this is using the wrong β , as it was a lower bound
we can still rely on the result. We can terminate the analysis and return γ .

This process is pretty much what an aspiration search or a minimum-window search does. If we’re
‘lucky’, then we get good results much faster, because of the small window. If we’re caught out, then
we have to try again, and it’s a matter of pragmatism and experiment whether we gain or lose.

3 There are many possible trees, including the one where all static evaluations are zero. The one shown is
constructed as follows: we write down 0 at the root, then for each node which is the left-most child, we
write down the negative of the value of its parent, and for each other node we write down a larger
integer than that. For the particular tree, I simply wrote the next unused positive integer.

17-51615 18 22019-611090 -3 1413-41211 21

7-265 8

0

210

-1

2423-722 -8

430

2625

The nodes inside the dotted boxes are pruned, assuming the obvious left to right order of evaluation.

Note that because the α − β bounds are ± 2
1

� � and all the evaluations are integers, any node that is
established as having a positive value will then have its analysis pruned. For example, at the node
labelled 1 in the diagram, the value −1 of its left-most child establishes that its value is at least 1 and so
we don’t need to look at nodes 5 and 6; we already know that this value is going to be at most −1 when
returned to the root of the tree, and therefore the corresponding move will be worse than that to the left
branch.
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Note further that if a different search order is used, then the pruning will be different. For exam-
ple, again in the above diagram, if we had searched node 5 before the node −1, then the first value, −5
would have established that node 5 was worth at least 5, causing a cut-off and saving the search of
nodes 17 and 18, and this would have returned −5 to node 1, below the floor, and we would then still
have needed to look at node −1. If, perchance, the very leftmost node at the bottom had been −1
instead of 0, then the value backed up to the root would already have been 1, a β -cutoff, and we would
not have needed to search nodes 1 and 2 at all.

4 [All such questions are somewhat bogus! Real games would be much too complicated to analyse, so we
have to make some fairly drastic assumptions. In exam questions of this sort, the actual numbers are
not very interesting—you would get most, if not all, of the marks by showing that you understand how
pruning and move ordering affect which nodes have to be looked at—except as order-of-magnitude
demonstrations of how important these techniques are. We also have to ignore effects such as the use of
transposition tables (for faster results when the same position arises from different move sequences—
this is a very important speed-up in games like Chess or Go where this often happens, less important in
Othello, though still useful).]

(a ) With no pruning, every continuation to 10-ply [5 moves by each side] must be examined, so static
analysis is required on (about) 40×20×40×20×40×20×40×20×40×20 ≈ 3.28×1014 nodes, taking
roughly 3×108 seconds, 10 years. [This is bogus, because after any White move other than the
best, it is possible that White is now losing, and the move counts, based on the assumptions given,
are therefore the other way round. But in real life, it is not too unrealistic —the number of avail-
able moves to each side mostly varies relatively little.]

(b ) We come back to this after (c)!

(c ) With pruning and move-ordering, all Black moves must still be looked at, for Black is losing, but
for White, the first choice of move must be analysed completely, but other moves will turn out not
to be as good. For each not-so-good move, Black has at least one reply which ‘refutes’ it, and
causes a β -cutoff. With perfect ordering, this move will be tried first, so the search will be faster
by a factor 20 from this cause alone; there will be similar improvements further down the tree, so
we can ignore the time taken by analysing the not-so-good White moves, and the time taken is
roughly that for 1×20×1×20×1×20×1×20×1×20 = 3200000 static evaluations, or 3.2 seconds;
108 times faster than case (a)! Now back to case (b).

(b ) With pruning but no move ordering, the news is not quite so good. We won’t normally find refuta-
tions quite so quickly—instead of finding one at the first move, if there is only one it will be found
on average halfway through the analysis, but if there are several, one should be found quite
quickly. Since this will apply at every level in the tree, even a factor of 2 speed-up will be a factor
of 8 after three moves, and we can expect to do better than this. So let us assume again that the
time taken to analyse moves that can be refuted can be ignored. Then the effect is that White
moves will be pruned away unless they are the ‘best so far’ in each position. Assuming all the
values to be different, and that the move ordering is random, the probability of the n -th move tried
being the best so far is 1 /n , so the expected number of best-so-far moves for White is
1 + 2

1
� � + 3

1
� � + 4

1
� � + . . . + 40

1
� ��� ≈ 4.3, so the time taken will be ≈ 4.35×205 /106 ≈ 4500 seconds, or 11⁄4

hours. [Note, much better than (a), much worse than (c).] [Any reasonable argument accepted
here. For example, if we are merely looking to see whether White wins or loses, and if we assume
that roughly half of White’s moves are winning, then White’s branching factor is 2 (instead of
4.3), and the time is around 100 seconds. There are lots of possible models.]

Rest of question—bookwork. In real life, the way to find out how much difference these ideas
make is to try them in a real program.

5 (a ) We have to search 12×11× . . . ×1 = 12! ≈ 479 million sequences of moves. each terminating in a
full board which takes 100 microseconds to evaluate. So the time taken is ≈ 47 900 seconds,
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somewhat over 13 hours. [This result, like the others here, ignores the possibility of
transpositions—compare the comment in the answer to Q4.]

(b ) In this case, we look at 1×11×1×9. . . ×1 = 10395 sequences to establish that the computer’s first
move in each position wins. If the computer is satisfied to win, that terminates the analysis, in
therefore just over a second. [The following argument was not expected, but would have earned
bonus marks:] If it wants to be sure that it has found the very best move, then it has to look at its
other moves, but each of these will be β -cutoff by the first reply, so there will be an extra
11×1×10×1×8× . . . = 42240 such lines, so the time will become around 5.3 seconds.

(c ) Here we have to look at all our moves, but the first move by the other side which is looked at will
suffice to establish the loss. So we analyse 12×1×10×1× . . . = 46080 lines, taking around 4.6
seconds. Extending this, as in (b), to establish exact values left as an exercise.

(d ) Any reasonable argument accepted. The simplest says that on average, we have to look at two
lines in a won position before we find one that wins [compare the average number of coin tosses
that we need before the coin shows heads], so we must look at 2×11×2×9×2. . . = 665280 lines,
taking just over a minute. A more sophisticated argument would establish and solve recurrence
relationships for Wn and Ln , the number of lines that must be looked at in won and lost positions,
respectively, when there are n moves to go. In a won position, we [on average] look at about one
losing line before we find a winning line, so Wn = Ln −1 + Wn −1 . [‘About one’ breaks down when n
is small; e.g. when n = 2, there is, by assumption, one winning move and one losing, and it’s an
evens chance whether you look at the losing line first, so you look at only half a losing line.
Details left as an exercise.] In a lost position, we must look at all n moves, and these all are won
for the other side, so Ln = n×Wn −1 . Now work back from W1 = L1 = 1 to find W12 . [Two minutes
with pencil and paper!] Note that with perfect ordering, as in (b) and (c), the equation for Wn
becomes [simply] Wn = Ln −1 , from which the numerical expressions obtained previously are easily
found.

The important point in all of this is that to show you are winning, you need to find only one win-
ning move; whereas a loss can be established only by looking at everything. Again, see the note at the
top of the answer to Q4; these questions are amazingly easy, and a gift of lots of marks, if you take a
pragmatic [‘engineering’ or ‘common sense’] view of games, and amazingly difficult—indeed, ongoing
research topics—if you expect exact answers.

6 (a ) An mn +1 has a set of Left options and a set of Right options. Each option must be one of the mn
games of length no more than n ; each such game may be either in or out of each set of options.
So there are 2mn ways of constructing the left set and the same number for the right set, and 22mn

ways of combining them. Clearly m0 = 1, so m1 = 22 = 4 and m2 = 28 = 256 [and m3 = 2512, is
getting rather large]. So the number of games of length exactly 2 is m2 − m1 = 252.

In fact, they must be made up from combinations of the four games of length 1 or less, viz. −1, 0,
* and 1. As Left options, −1 is dominated by the other three, and 1 dominates all the others, so
only the combinations −1, 0, *, both 0 and *, 1 and empty do not contain dominated options.
There are six such combinations, similarly for Right, so 36 games [of length 2] without dom-
inated options; each of the 252 games of length 2 must be equal to one of these 36.

If the Left options do not include either 0 or 1, then Left to play loses. There are four such sets of
options, viz. the set containing just −1, that containing just *, that containing both and that con-
taining neither. Similarly for Right, so there are 16 games of the 256 that are lost for the player to
move, and so have value 0. One of these is 0 itself, the other 15 have length 2.

(b ) Induction. There are, by inductive assumption, 1 + 2 + 4 + . . . + 2n −1 = 2n − 1 numbers of length
less than n , comprising the 2n −1 numbers of length n −1 separated by the earlier numbers. So the
numbers of length n are produced one each side of those of length n −1, and there are 2n of them.
Clearly 1 has length 1, 2 has length 2, 1 2

1
� � has length 3, 1 4

1
� � has length 4, 1 8

1
� � has length 5, . . . , 1 256

1
� �����
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has length 10.

7 No detailed solution given. Note when you draw the tree that Cross cannot initially complete a line, so,
by the ordering rules given in the question, the first move to consider is where Cross plays in the bottom
right corner; similarly Nought must then reply in the right middle, and the game is soon drawn. Your
tree should now move to other Nought replies to Cross’s first move; to all of these, Cross’s move to
right middle is a ‘killer’, causing instant pruning. Similarly, when you consider Cross alternatives at
the first move, Nought has a killer in the bottom right.

8 We first show that + G > 0. Left to play plays to 0, so wins; Right to play must play to {0
�

− G}, in
which Left can reply to 0 and win. So Left wins anyway, and + G > 0. Note that phrases such as
‘G > 0 if Left is to play’ are meaningless; G either is or is not greater than 0, and if all you know is that
Left to play wins, then G could be either positive or fuzzy.

Next, we show that + G 2
1� � . This means that + G − 2

1� � 0, i.e. that + G − 2
1� � is a Right win if Left

plays first. [If Right plays first, either player could win, consistently with ‘less than or equal’, so we do
not need to consider this case; similarly, ‘ 0’ means that Left wins if Right plays first.] Left playing
first could play to 0 in + G ; but this leaves the game − 2

1� � , which Right wins. Or Left could play to −1 in
− 2

1� � = {−1
�
0}; but then Right replies in + G to {0

�
− G} − 1, in which Left’s only move is to 0 − 1 < 0,

so Right wins. So 0 < + G 2
1� � , as required. Note that we have not had to contemplate what might hap-

pen if we actually had to move in G, luckily. For + G = 2
1� � , see below.

If G is a negative number, then − G is a positive number, say A, and {0
�
A} is the simplest number

between 0 and A, so is a positive number B, say. Hence + G = {0
�
B} is the simplest number between 0

and B, so is itself a positive number. [Note that B 1, so + G
1⁄2, confirming the above in this special

case. It is important that A is a number; if, for example, G is ↓, then you will find it difficult to slip in a
number, simple or otherwise, between 0 and ↑, and the Simplicity Theorem doesn’t apply.]

In particular, if G = − 1, then A = 1, B = 1⁄2, and + −1 = 1⁄4; while if G = − π, then A = π, B = 1
and + − π = 1⁄2.

When G is a positive number, we must show that Right wins + G − ↑ = + G + ↓. The basic idea is
that Right has stronger threats in + G than Left has in ↓; see also Q13. Left to play can kill + G , leav-
ing Right winning ↓; or Left can play to * in ↓, when Right replies to {0

�
− G} in + G . Now Left can

either kill {0
�

− G}, leaving Right to move in *, or kill *, leaving Right to play to −G < 0; so in either
case Right wins. Alternatively, Right to play first plays to {0

�
− G} in + G . Now Left can either kill

{0
�

− G}, leaving Right winning ↓, or can play to * in ↓, when Right replies to −G* and wins. So again
Right wins, and + G < ↑, as required.

[These explanations in words always seem a lot more complicated than they really are. If the
above confuses you, try with the example of + 2 and ↓ from Domineering in front of you. + 2 is a Left
win; but if Right gets first move, and plays to −1 ± 1 in it, the threat of moving to −2 is so strong that
Left cannot take time out to mess around with ↓, but must immediately attend to the threat. The hottest
threats are the most urgent.]

9 Clearly, Left to play can only block the position to 0, and Right to play has only one move, to LRL.RR,
with an obvious notation. In this position, Left can play only to LR.LRR [which we must show to be 0],
and Right to LRLR.R [which we must show to be − 4

1� � ].

(a ) In LR.LRR, Left to play must play to .RLLRR, leaving Right [only] a free move, while Right to
play must play to LRRL.R, which is clearly a first-player win in three more moves. So LR.LRR is a
first-player loss, i.e. is 0.

Turn Over
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(b ) In LRLR.R, Right to play must block to 0, while Left must play to LR.RLR =
{ .RLRLR � LRR.LR }. Now LRR.LR is clearly a first-player loss in at most two moves, so
LRR.LR = 0, while .RLRLR = { � R.LRLR }. Finally, R.LRLR is clearly a first-player loss, as Left
cannot move and Right can only play to RRL.LR in which Left to play can block to 0. So:
.RLRLR = { � 0 } = −1; and LR.RLR = { −1 � 0 } = − 2

1� � ; and LRLR.R = { − 2
1� � � 0 } = − 4

1� � , and
the result follows.

10 (a ) The game n , n −1, n −2, . . . , 2, 1 shows that the game can last for n moves, for any n , and so its
length is unbounded.

Suppose that the first move is n , and at any later stage after this, suppose that the product of the
coins other than n is m . Let the GCD of m and n be d . Then m /d and n /d are co-prime, so all
integers greater than (m −d)(n −d) /d2 can be written as (pm + qn) /d ; in other words, all but a
finite number of multiples of d are now ‘killed’; within at most (m −d)(n −d) /d2 steps, a coin must
be nominated that does not have d as a factor, and thus the GCD of n with the product of the
remaining coins must reduce. As this can happen no more than n times, the game must terminate.

(b ) After playing 2, all even coins are ‘killed’; the response 3 kills 3, 5 = 3 + 2, 7 = 3+2+2, . . . , i.e.
all odd numbers other than 1, thus forcing the play of 1. Similarly, 2 is a winning response to 3.
So the first play of either 2 or 3 loses.

Playing 4 and 5 kills 8 = 4+4, 9 = 4+5, 10 = 5+5, 12 = 4+4+4, 13 = 4+4+5, 14 = 4+5+5 and
15 = 5+5+5, and hence all greater coins, which are 4 more than a coin already killed. [Or Sylves-
ter: 4 and 5 are co-prime, so all numbers 3×4 = 12 are killed.] So the only remaining coins are
1, 2, 3, 6, 7 and 11. 1, 2 and 3 are always bad, as just seen. If Left plays 6, this kills 11 = 6+5, so
the reply 7 leaves only 1, 2, 3 for Left and Right wins; similarly, if Left plays 7, the reply 6 wins
for Right. So Left should play 11, forcing Right to choose between 6 and 7, Left takes the other,
and only 1, 2, 3 are left for Right. Left wins. [Actually, 6 is a winning reply to 4, and an initial 5
wins for Left; but these are quite deep results.]

11 No solution given—all parts are either bookwork or routine.

12 Note that an all-small game is either 0 [neither player can move] or else is of form G =
{a, b, c, . . . � d, e, f . . .} where all the options are themselves all-small and neither list is empty [both
players can move]. We have to show that G − 1 < 0 (that is, is a Right win). Informally, what happens
is that Right wins by playing in G whenever possible; all-smallness means that this is possible until G is
reduced to zero, when only the −1 is left.

More formally, assume the result to be true for all options of G. Note that in the limiting case
when G = 0, there are no such options, so there is no need for an inductive base, beyond observing that
the induction must terminate because we’re always moving to simpler games. Left to play must play to
some option for which the inductive hypothesis holds, so Right wins; or else Left cannot play at all
[when G = 0], in which case Right has already won. With Right to play, if G = 0 then G − 1 = −1, in
which Right can move to 0 and win; if G ≠ 0, then because G is all-small it has a Right option to which
the inductive hypothesis applies, so again Right wins. So in all cases Right wins, QED.

For the next bit, you must exercise care. It is tempting to say that if G x , then G + G + . . . + G
nx , where n is the number of copies of G, that G + G + . . . + G is all-small, and that for sufficiently large
n , nx 1, which contradicts the previous result. All of this is true, and it shows that G is not x . But
that is not equivalent to G < x ! G is not necessarily a number; it may be fuzzy with x . However, we
can extend the previous idea. The only difference is that Left now may have extra moves in G − x ,
because there are moves in x . However, any such move, as x is a number, is to G − y , where y > x , and
in particular no move by Left can run Right out of moves in −x —all it can do is give Right more spare
moves. So, whatever Left does, Right simply plays in the all-small game until it vanishes, when Right
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is left with a negative number and a win. Formalising this is very similar to the above.

Note that ↑ is an all-small game which Left wins, so is strictly positive. [This result shows that it
is, however, smaller than every positive number.] Q8 shows that + 2 is a positive game which is less
than ↑, and so is also less than every positive number; since + 2 has a Right option which has a Right
option of − 2 [imagine Right playing in the two middle columns], which is non-zero but has no Left
option, + 2 is not all-small. All impartial games are all-small [if either player can move, both can, as
they both have identical moves], so all impartial games are infinitesimal.

13 We have to show that + y + − x > 0, where − x (‘miny-x ’) is − + x = {{x � 0} � 0}. The technique is for
Left to use the threat of playing to x to overcome Right’s threat of playing to y . So Left to play plays to
{x � 0} in − x ; Right can either play to 0 in this game, leaving Left winning + y (as in Q8), or to {0 � − y}
in + y . In this latter case, Left plays to x + {0 � − y}, and whether Right replies to x − y or to p + {0 � −y}
(where p is some Right option of x , and necessarily a positive number), in which Left can reply to p ,
Left is winning. If, on the other hand, Right plays first, then playing to 0 in − x leaves Left winning + y ,
and the only other move is to {0 � − y} in + y . In this case, Left has a reply to {x � 0} in − x , and again,
because x > y , the result will be a clear Left win after one more move on each side.

Informally, the same idea works when playing + y + n . − x . Left can ‘kill’ all the − x ’s in turn, by
using the threat to move to x in one of them. [Note that, following Q12, Q8 and the result in the first
part, + x and + y are infinitesimal, so any positive number dominates any finite collection of them.] We
can see this in action in Domineering—imagine a large collection of + 2s, or 2 by 4 rectangles, all won
for Left, and one measly ↓ [the wedged-together *s, and note that ↓ is − 0]. Right wins by simply pick-
ing off all the rectangles in turn; the threat to move to − 2 forces Left to keep ‘fire-fighting’, replying to
0 in each rectangle. Thus + x is not only less than + y , though still positive, it is infinitesimal compared
with it. Thus, game theory includes an infinite hierarchy of infinitesimals, since x can be any positive
real number. Formalising this into a proof (by induction) is left to the interested reader.

14 − A is the game obtained by interchanging the roles of Left and Right; A + B is the disjunctive sum of A
and B—the game wherein a move consists of moving in either A or B; A > B means that Left (whether
or not on move) wins the difference game A − B = A + (−B ); A � � B means that whoever is to move wins
the difference game.

(a) For example, A = 2, B = ± 1.
(b) No such game; Left to play wins by playing first in B, replying in whichever game Right moves in.
(c) For example, A = 1, B = ± 2.
(d) For example, A = 2, B = − 1 ± 2.
(e) For example, A = 2 ± 1, B = −1 ± 2.
[Many other solutions, possibly using games like *.]

Consider the game H = G + n , for some number n . First of all, we show that H cannot be fuzzy.
Suppose it is; then Left to play wins, either by playing in n to some number p < n , or by playing in G to
some left option L of G. But Right to play also wins H, by assumption, and so Right to play wins G + p
(which is better for him than H = G + n ), and also wins L + n , which is better for him than G − ε + n < H.
This is a contradiction. [Informally, playing in either G or n makes your position worse, so if Left wins
with first move, Left must also win without.]

So one of H > 0, H < 0 and H = 0 holds. Clearly, if H > 0, then H + q > 0 for any positive
number q , so there is some real number x such that H > 0 if n > x and H < 0 if n < x . [Informally, we
have defined a Dedekind section of the real line.] What happens if n = x? Well, Left to play can play,
as before, either to G + p , where p < x , so G + p < 0, by the construction of x , or to L + x < G − ε + x < 0,
as x − ε is a number less than x ; so Left to play loses. Similarly, Right to play loses, and H = 0, so
G = −x is a real number. [Note, things would get very murky if ε were, say, + 2 , which is positive, but
not a number; then x − ε would not be a number less than x , so would not be in the left partition of x .
Note also that things can get murky if G (and hence x ) is infinite. If you are happy with infinite

Turn Over
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numbers, there is no problem!]

Each left option L of G is therefore less than −x − ε , and each right option R is greater than −x + ε .
There must be a multiple of ε between these values, and so x must be a multiple of ε by the Simplicity
Theorem.

15 Parts (a) (d) and (e) are bookwork. For (b), suppose that G = {A, B, C, . . . � D, E, F, ...}; then −G =
{−D, −E, −F, . . . � −A, −B, −C, ...}. If Left to play first plays to A+G, then Right has a reply to
A+ (−A) = A−A = 0 [by induction, since A is simpler than G]; or if Left plays to G −D then Right has a
reply to D −D = 0, and similarly for all Left moves, so Right wins. Similarly, if Right plays first, Left
wins, and G + (−G ) = 0. For (c), if G is impartial, then −G = G, and we can use the result of (b).

16 Explanation—bookwork. The given games are, respectively, 2, 2, 0, − 1*, − 2 2
1� � ± 1 2

1� � , − 2
1� � , 1 and 2

1� � .

If p and q are not numbers, but p < q , then we cannot directly apply the simplicity theorem; we
will have to do a case-by-case examination. Nevertheless, the conclusions of the simplicity theorem
may hold; recall that the ‘proof by example’ in lectures depended on the result being intermediate
between p and q but having its options outside that range. So {↑ � 1} = 2

1� � , as ↑ < 2
1� � < 1, but the options

[0 and 1] of 2
1� � do not satisfy those inequalities. In the second case, {0 � ↑}, there is no number between 0

and ↑, so the simplicity theorem cannot be applied at all; this is, in fact, the canonical form of this
game. In { ± 1 � 2}. there are numbers strictly between ±1 and 2; the simplest such number is 11⁄2. But
this game is clearly in fact 0, as if Left plays to ±1, then Right gets to move to −1 and wins, while if
Right plays first it must be to 2, a Left win.

Exercise for the reader: What happens if you add 2 to both options, thus {2 ± 1 � 4}? Is this 2?
What if I add 11⁄2? Is it then 11⁄2? Can you generalise your findings?

17 (a ) Part (i) is a matter of strategy. To show that G H, we must show that G − H 0, in other words
that G − H is a win for Left if Right moves first [we don’t care who wins if Left moves first—it
will be Left if G > H or Right if G = H]. But Right moving first must play to one of D − H, E − H,
F − H, . . . , G − B, G − C, . . . , and in each of these Left has a reply to the zero game D − D, . . . , B − B,
. . . . The only move by either side to which there is no symmetric response is Left’s move to A in
G, and that cannot be played by Right. Part (ii) is bookwork.

Part (iii) is trivial if you spot the answer, otherwise you need to apply common sense. In the sup-
position, move A is the best move available. Does it make any difference if move A can’t be
played? Well, it does if the move is good, and it doesn’t if the move is futile. Now it’s easy to
construct examples where G = H. For example, the games {−2, −1 � 1} and {−2 � 1} are equal
[both zero]. Summary—it can’t do you any harm to be given extra possible moves, and it may
[but won’t necessarily] do you some real good [even if the extra moves are the best available].

(b ) First part is bookwork. If p is not a number, then p + * and {p � p} will differ in general. One
example is the case p = ↑; an even easier one to analyse is the case p = ± 1 [for ±1 + * is obvi-
ously a first-player win, while { ± 1 � ± 1} is a first-player loss].

18 First part—bookwork. G = 3 + 4 2
1� � ± 2 2

1� � − 4 ± 5 − 1 ± 1 = 2 2
1� � ± 5 ± 2 2

1� � ± 1; so playing the ‘hottest first’ stra-
tegy, Left plays to 2 2

1� � + 5 ± 2 2
1� � ± 1, Right replies to 7 2

1� � − 2 2
1� � ± 1, and Left reaches 5 + 1 = 6, while if, on the

other hand, Right plays first we get successively to 2 2
1� � − 5 ± 2 2

1� � ± 1, − 2 2
1� � + 2 2

1� � ± 1, and −1, as required.

Note that H = 2 2
1� � ± 3 2

1� � , so G − H = 2 2
1� � − 2 2

1� � ± 5 ± 3 2
1� � ± 2 2

1� � ± 1, in which Left to play reaches
5 − 3 2

1� � + 2 2
1� � − 1 = 3 and Right to play reaches − 5 + 3 2

1� � − 2 2
1� � + 1 = − 3. So, G − H is a first-player win, and

in particular is not 0, so G ≠ H. [Trivially!] If we take K = − H = − 2 2
1� � ± 3 2

1� � , then, as we have just seen,
G + K is a first-player win, while H + K = 0 is a second-player win. Since ± n + ± n = 0 for any n ,
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G + G = 5 = H + H.

19 First part: virtually bookwork – a number game is the disjunctive sum of numbers, stars and switches,
so 2H is numbers plus an even number of stars [and * + * = 0] and pairs of switches [and ±n ± n = 0], so
we are left only with numbers. In the given case,

H = {3 � 6} + {3 � 1} + {8 � 1} + {−4 � 4} + {−4 � −4} + {4 � −4} = 4 + 2 ± 1 + 4 2
1� � ± 3 2

1� � + 0 − 4 + * ± 4,

i.e. H = 6 2
1� � + * ± 4 ± 3 2

1� � ± 1 and 2H = 13.

20 [Think of G :H as H ‘sitting on top of’ G, so that when you play in G, H disappears, rather like Hacken-
bush, but playing in H is ‘independent’.] So 1:−1 = {0 � 1:0} = {0 � 1} = 2

1� � . In *:*n , which is clearly
impartial, either player can play to 0 [by playing in the left-hand *] or to *:*k for any k < n ; but, induc-
tively, *:*k = *(k +1), so either player can play to *p for any p n , and this is *(n +1).

In *:1, Left can play to 0 or to *:0 = *; Right can play only to 0. So this game is {0, * � 0}; which you
may recognise as our old friend ↑ + *, or as the Hackenbush ‘flower’ with a green stem and a blue top,
and making ↑ if you add a single blade of grass.

We have to show that G :H − G :K 0, so that Left wins if Right plays first. If Right plays in G to some
option A, then Left can play to −A in −G :K, leaving a zero game with Right to play; similarly, if Right
plays in −G. If Right plays in H or −K, then as H − K 0, Left has a winning response, leaving a
simpler game G :H ′ − G :K ′ [where either one move has been played in each of H and −K or two moves
have been played in one of them] where it is Right to play and H ′ K ′ , so Left wins, by induction. If
H =K, then H K [Left wins H −K if Right plays first], and so G :H G :K; similarly, G :H G :K; so
whoever plays first in G :H − G :K, the other player wins, so G :H − G :K = 0 or G :H = G :K. [We have to
be a little careful, you can’t just use elementary algebra, as these aren’t numbers but games, and some of
them may well be fuzzy. Exercise: if H > K, does it follow that G :H > G :K?]

A Hackenbush tree is the corresponding bush on a stalk; so T = *:B. If B = *n , then our previous
results show that T = *:*n = *(n +1), which is the Tree Principle. [More generally, in any Hackenbush
position, impartial or not, any sub-picture which is joined to the ground at only one node may be
replaced by any other sub-picture of the same value; the Tree Principle is the special case where an
impartial picture is replaced by its Grundy-equivalent snake.]

21 (a ) ↑ + * = {0 � *} + {0 � 0} = {↑+0, 0+* � ↑+0, *+*} = {↑, * � ↑,0}.

Now, as a R move ↑ is dominated, as ↑ > 0, and as a L move it is reversible, through its R option
* [as * ↑+*], to the L option(s) of *, or 0. Thus,

↑ + * = {0, * � 0}.

(b ) Let H = {↑ � ↑}, and let G = {↑ � ↑} + ↓. Then

G = {H +*, ↑+↓ � H +0, ↑+↓} = {H +*, 0 � H, 0}.

Now, as a R option, H is dominated, as H > 0 [H is a game in which all options are left wins]; as a
L option, 0 is dominated, as H +* > 0 [L can play to H, R must play either to H or to ↑+* with L
to play (which we have just seen is a left win)]. So G = {H +* � 0}. Now look for reversibilities.
In H +*, R can move to ↑+*, so we need to check whether ↑+* G, that is, whether
G − (↑+*) 0, that is whether L wins G − (↑+*) if R plays first. Now, in G − (↑+*) =
H + ↓ + ↓ + *, R can play to ↑ + ↓ + ↓ + * = ↓ + *, or to H + ↓ + *, or to H + ↓ + ↓; in which L can
reply to * + * = 0, or to H > 0, or to H + ↓ + * > 0 respectively. So H +* is reversible through ↑+*
to the L options of ↑+*, that is [as in part (a )] 0 and *. That is,

{↑ � ↑} + ↓ = {0, * � 0}.

[With the hindsight of now spotting that G = ↑ + *, we could derive this much more easily by

Turn Over
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showing that G + ↓ + * = 0.]

(c ) Although this game, call it K, is not as it stands impartial, it is composed of Nim heaps; so we
suspect, using mex theory, it has value *2. Indeed, if Left plays first to *3, say, then Right has an
option *2; and if we look at *2 − K with Left to play, then we see that Left must either play in −K
to a Nim heap of size different from 2 or in *2 to a Nim heap which is present as a Right option in
−K, so Right wins in either case. That is, *2 − K 0, and the move to *3 is reversible through *2
to Left’s options in *2—that is, to 0 and *. As these are already present in K, effectively *3 can
be deleted. Similarly, so can the other larger stars, and K can be reduced to *2. [This is round the
houses, to show how reversibility can be used instead of mex theory; but it is actually just as good
to look at K − *2 and show that this is the zero game, so that K = *2.]

(d ) 2 + − 2 = {1 � } + {{2 � 0} � 0} = {2+{2 � 0}, 1+ − 2 � 2+0} = {{4 � 2} � 2} = {3 ± 1 � 2}

[either of the last two forms acceptable, and in the previous form, one of the left options was dom-
inated as − 2 is infinitesimal].

(e ) {↓ � ↑} + {4 � 0} + ±2 + 2* = 0 + (2 ± 2) ± 2 + 2* = 4* = {4 � 4}.

[either of the last two forms acceptable].

22 The game is in five disjoint parts. Three of these are old friends: *, ± 1 and ↑. The other two are the
[upside-down] T-shaped region in the top middle, and the 3×2 rectangle at the bottom right. The T-
region is clearly − 2

1� � , either by noting that the extra square compared with an L-shaped region is no use
to Left, or by observing that Left can only play to −1 and Right can play to 0. The rectangle is hot.
Left can play to 2 or to ± 1 [clearly dominated]; Right’s moves are all equivalent, by symmetry, and are
all moves to − 2

1� � . So the rectangle is 4
3� � ± 4

5� � , and the total position is * + ↑ ± 1 − 2
1� � + 4

3� � ± 4
5� � =

4
1� � * ± 4

5� � ± 1 + ↑.

(a) Left playing first should claim the two free moves in the bottom right, and Right should reply
in the ± 1 at top right, leaving the position 4

1� � * + 4
5� � − 1 + ↑ = 2

1� � * + ↑ > 0, and Left wins. (b) Right
playing first should equally play first in the bottom right, and Left should reply in ± 1, leaving the posi-
tion 4

1� � * − 4
5� � + 1 + ↑ = * + ↑. This game is fuzzy, and it is Right to play, so Right wins by playing

either move in the ↑ in the bottom middle. This will leave two *’s, a +1 and two − 2
1� � ’s, which all can-

cel nicely, leaving a zero game with Left to play.

23 Suppose without loss of generality that Left plays first. In general, after a few moves, there will be
several types of region: type A—some empty fields bounded by two Left fields; type B—some empty
fields bounded by two Right fields; type C—some empty fields bounded by one Left field and one
Right; type D—some empty fields bounded by one Left field and the end of the farm; type E—some
empty fields bounded by one Right field and the end of the farm.

In Col, we have to show a strategy by which Right wins, in other words a way of playing such that
wherever Left plays, Right always has a reply. General idea—types B and E are clearly bad for Right,
so we show how to avoid them. Left’s initial move must create two Ds, of which one [but not both, as
n 2] can be empty. In a D, Right can play in the end field, creating a [possibly empty] C with Left to
move. In a C, Left to move must create an A [which cannot be empty, as he can’t play next to his own
field] and a C, which could be empty. Equally, in a D, Left to play must create another D [perhaps
empty] and an A [which cannot be empty]. So when it is Right’s turn to play, after the first move, Left
must have just created an A region, in which Right can play [anywhere] creating two [perhaps empty] C
regions with Left now to move. So Right always has a move, and his strategy is to move in an end
square on his first move, and thereafter always to move [anywhere] in the A region that Left has just
created. As Right always has a move available by following this strategy. Left must lose [when all the
C regions become too short to move in].
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In Snort, we have to show that Left, playing first, can always win. Here, the simplest strategy uses
symmetry. If n is odd, play first in the central field. If n is even, play first in one of the central fields,
and note that this prevents Right from ever using the other central field. Now Left can always copy
Right’s moves symmetrically about the centre. By the strategy, the only difference between the two
halves of the farm is that Left has occupied the centre, which reserves the adjacent fields for him and
denies them to Right. So any move which Right plays has a symmetric counter, and Left cannot be run
out of moves, so Left wins.

24 In Col, the LH region is reserved for Red, value −1. In the rest of the diagram, Left to play can play
either in the triangle, reserving the remaining three regions for Red, or (clearly better) in the RH region,
giving Red only two more moves. Right to play can play in the triangle, leaving Blue one move, or in
the top or bottom region, allowing Blue to play in the RH region and allowing only one further Red
move, or (clearly best) in the RH region, forcing Blue to the triangle. So the value of the game is

− 1 + {−2 � −1} = −2 2
1� � .

In Snort, Blue clearly plays to either the triangle or the RH region, reserving all four remaining
regions. Red can play to the triangle, killing the top and bottom regions, and leaving one reserved
region each, or (worse) to the RH region, allowing Blue to take the top and reserve the two remaining
live regions. So the game is

{4 � 0} = 2 ± 2.

25 There are four uncoloured regions; call them A, B, C and D from left to right. Then, in Col, the posi-
tion is {A:, C :, D : � :A, :B, :C, :D}, where the notation, for example, PQ :R means the position where the
regions P and Q are coloured blue and R is coloured red. Now use brute force! (Note that any position
where at least two of A, B, C and D have been coloured can be evaluated by inspection.)

A: = {AC :, AD : � A:B, A:C, A:D} = {−2, −1 � 1⁄2, 1, 0} = {−1 � 0} = − 1⁄2;
C : = {AC : � C :A, C :B, C :D} = {−2 � −1, 0, − 1⁄2} = −11⁄2;
D : = {AD : � D :A, D :B, D :C} = {−1 � −1, 1, ∗} = −1∗;
:A = {C :A, D :A � :AC, :AD} = {−1, −1 � 1, 1} = 0;
:B = {A:B, C :B, D :B � :BD} = {1⁄2, 0, 1 � 2} = 11⁄2;
:C = {A:C, D :C � :AC} = {1, ∗ � 1} = 1∗;
:D = {A:D, C :D � :AD, :BD} = {0, − 1⁄2 � 1, 2} = 1⁄2.

So the original position is { − 1⁄2 � 0} = − 1⁄4.

Similarly in Snort, the original position is now {A:, B :, C :, D : � :A, :C, :D}, which we can evaluate
using

A: = {AB :, AC :, AD : � A:C, A:D} = {{1 � 0}, 2, 2 � −1, ∗} = {2 � −1};
B : = {AB :, BC :, BD : � B :D} = {{1 � 0}, 2, 2 � 1} = {2 � 1};
C : = {AC :, BC :, CD : � C :A} = {2, 2, {1 � 0} � 1} = {2 � 1};
D : = {AD :, BD :, CD : � D :A} = {2, 2, {1 � 0} � 1} = {2 � 1};
:A = {C :A, D :A � :AC, :AD} = {1, 1 � −1, −1} = ± 1;
:C = {A:C � :AC, :CD} = {−1 � −1, ∗} = −1∗;
:D = {A:D, B :D � :AD, :CD} = {∗, 1 � −1, ∗} = ± 1.

So the original position is {{2 � 1} � −1∗}, as required.

26 In Col, if Left plays first, then whatever the move, Right can always colour the symmetrically opposite
region, so Left must lose. Similarly, Right to play loses, so this is the zero game.

In Snort, there is no way in which Left to play first can colour a region so as to prevent Right from
moving, but Left can do the next-best thing, by playing in either rectangle. In the resulting position,

Turn Over
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Left could play in the other rectangle to +4 (and there is clearly nothing better), while Right can only
play in the opposite curved region, killing the other rectangle and leaving the position as +3. So Left
playing first plays to {4 � 3} = 31⁄2 ± 1⁄2. Similarly, Right playing first plays to −31⁄2 ± 1⁄2, and the starting
position is therefore {31⁄2 ± 1⁄2 � −31⁄2 ± 1⁄2}.

27 [This is a ‘jumbo’ solution to all versions of this question as set in various years!]

(a) In Sn +1 + Sn +1 − Sn , Left to play can either (i) chop down an Sn +1 , in which case Right can take
the top edge in the remaining Sn +1 , leaving Sn − Sn = 0 with Left to play, or (ii) chop at least one edge
from − Sn , say to − Sk , where 0 k < n , in which case Right can chop the same number of edges from
an Sn +1 , which leaves Sn +1 + Sk +1 − Sk Sk +1 + Sk +1 − Sk = 0 (inductively). On the other hand, Right to
play first can (i) chop the − Sn , which is a trivial Left win, or (ii) chop one edge from an Sn +1 , leaving
Sn +1 + Sn − Sn = Sn +1 > 0, or (iii) chop more than one edge from an Sn +1 , leaving (say) Sn +1 + Sk − Sn , in
which Left can chop n − k edges from − Sn , leaving Sn +1 + Sk − Sk = Sn +1 > 0. So Sn +1 + Sn +1 − Sn is a
second-player win, hence zero. Since S0 = 1, and the Sn are numbers, by assumption, we deduce that
Sn = 2−n.

(b) S∞ is still a Left win, so ε > 0. On the other hand, S∞ is better for Right than any (finite) Sn ,
as you can see by playing S∞ − Sn , so ε < 2−n for every n ; the result follows. On the third hand, if we
play S∞ − ↑ = S∞ + ↓, we see that Left wins, by following the prescription of Q12 (play in the all-small
game whenever possible), and we deduce that ε > ↑.

You can interpret S∞ as the game in which Left chops to zero, Right can select which Sn to play to.
Similarly, there is an even-better-for-Right game S∞ + 1 in which Left chops to zero, but Right can ‘pass’
for one move before deciding which Sn to play to, and an S∞ + 2 in which Right can ‘pass’ twice, and an
S2∞ in which Right chooses how often to pass, and an S3∞ in which Right chooses how often to pass
before eventually playing to S2∞ , and an S∞2 , and so on. All of these games are Left wins, as Left can
chop them down at any time; they are all different infinitesimals, as you can see by playing them
against each other, and they are all large compared with the tiny games like + 2 . In fact, you can inter-
pret ε as 1/∞, as long as no real mathematician is looking, and then there are lots of (strictly) smaller
infinitesimals like 1/ (∞ + 1) and ∞−2 and even ∞ − ∞, all corresponding to perfectly reasonable games,
but all behaving just like numbers. They are small compared with ordinary real numbers, but large
compared with all-small games and tiny games. For much more on this see Winning Ways, or Conway’s
earlier book On Numbers and Games.

(c) If G has edges of only one colour, then the result is trivial, so we assume that there are both red
and blue edges, and so both left and right options. Inductively, we can assume that all options of G are
equivalent to numbers.

If A is a left option of G, it is obtained by removing from G a blue edge e and the [possibly empty]
lumber of e. We obtain − A by swapping blue and red edges in A. Now consider G − A, the Hackenbush
picture obtained by drawing both G and − A in the same picture.

Left to play wins G − A trivially by playing to A − A = 0. Right to play may possibly take a red
edge in the lumber of e; since this edge cannot be e itself, Left can still take e, removing what is left of
its lumber, and again reaching A − A = 0. Every other Right move removes a red edge (and its lumber)
which has a blue counterpart in the other component. In the resulting position after Blue removes this
counterpart, call it G ′ − A ′ , following therefore exactly one move in G and one in − A, either the move
from G to G ′ has removed e (and its lumber), in which case G ′ = A ′ (and Right, now to move, loses), or
it hasn’t, in which case A ′ is the option of G ′ obtained by taking e, and, inductively, G ′ − A ′ is a left
win.

So, G − A is a left win; similarly, B − G is a left win, where B is any right option of G, and so
(B − G) + (G − A) = B − A is a left win, or B > A. That is, G is a game all of whose options are numbers,
by inductive assumption, and all the left options are less than all the right options; so the simplicity
theorem applies, and G is the simplest number between these two sets of numbers. That establishes the
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induction, QED.

28 Clearly Abbreviations is a thin disguise for Red-Blue Hackenbush played on strings rather than more
general pictures. Using previous results, every position is therefore a number; banana, i.e. CVCVCV, is
worth −1 + 2

1� � − 4
1� � + 8

1� � − 16
1� ��� + 32

1� ��� = − 32
21� ��� ; and the given string VVCCVC CVCV CV V CVC CVVC has value

(2 − 2
1� � − 4

1� � + 8
1� � − 16

1� ��� ) + (−1 + 2
1� � − 4

1� � + 8
1� � ) + (−1 + 2

1� � ) + (1) + (−1 + 2
1� � − 4

1� � ) + (−1 + 2
1� � + 4

1� � − 8
1� � ), that is

1 16
5� ��� − 8

5� � − 2
1� � + 1 − 4

3� � − 8
3� � = 16

1� ��� [details left as an exercise!]. So Violet just wins, and as the only word with
sixteenths in it is Euclid, the only winning move is to play the last vowel therein, as required.

If a phrase includes a y , then either player may play it, and so at least one Left option is equal to at least
one Right option, This contradicts the definition of number. In the given phrase, CVyVCC CyCVVCC
VCV VCV, the bits before any y ’s have total value 0 [exercise], so whoever first takes a y will lose to the
other player taking the other y . So the game hinges on who wins VCC CVVCC, thereby forcing the
other player either to take a y or to move in the bits before the y ’s. Clearly this is Connie, as CVVCC is
the negative of VCC with two extra consonants; so Connie has the waiting move tycoo, making the rest
of the game symmetric, while if Violet moves first, she must play a move which has a symmetric
counter.

29 [My ‘model solution’ has pretty pictures, which I’m not going to attempt to reproduce here! Denote
instead a ‘stalk’ by a sequence such as WWBWBB, meaning a white edge at the bottom, surmounted by
another white edge, then a black, then a white, then two blacks at the top.]

House: Left’s moves are to W + BB = −1 and to BBW, in which Right can’t move and Left can move
only to BB = −2. Right’s moves can be obtained by symmetry. So

House = {−1, {−2
�
}

�
+1, {

�
+2}} = {−1, 0

�
1, 0} = {0

�
0} = *.

Giraffe: Right to play has two possible moves: chopping the rear leg loses to chopping the front leg;
so R must instead chop the back, leaving the back legs [clearly zero] and the stalk WBBW, which
is clearly a loss for whoever goes first, so is zero. Left to play has three possible moves: chopping
the head moves to −2; chopping the middle leg moves to [as it happens, see later] 2

1� � ± 2
1� � = {0

�
−1};

chopping the front leg gives the back legs surmounted by the stalk BBBW. In this last position,
chopping the head is still silly, and chopping either leg moves to a stalk which is clearly zero.
What about the middle position? Left to play still obviously loses by chopping the head, but chop-
ping the front leg gives the stalk BBBBW, clearly zero. Right to play can chop either the back or
the back leg, leading in either case to a position where Left has no useful move, but Right still has
one choppable edge to reach a zero stalk. Hence the result. So

Giraffe = {−2, {0
�
−1}, {0

�
0}

�
0} = {*

�
0} = ↓.

[Note that {0
�
0} dominates {0

�
−1}; a game cannot be improved ‘merely’ by making some moves

worse.]

Chair: Left to play moves to −1 by taking the chair back or to BBW = 0 by taking the back leg.
Right to play moves to {BW

�
2} = {0

�
2} = 1 by taking the front leg, or to B + WW = −1 + 2 = 1 by

taking the seat. So

Chair = {−1, 0
�
1, 1} = 2

1� � .

[These are all taken from Winning Ways, p54, but at least two of their values are wrong!]

30 Suppose the players are labelled A, B, C, are playing in that cyclic order, and that A and B form the
coalition. From (2, 2), if A plays first, then A can take one heap, B the other and win. If B plays first,
then he can remove one match/pebble/coin, leaving C with the position (2, 1); C cannot win immedi-
ately in this position, and must leave no more than two matches, so cannot get another chance to play, so
must lose. If C plays first, he must leave either one heap or two; if one, then A can remove it and win;

Turn Over
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if two, then A can remove one and B the other, and win. So in all cases, C is one of the losers.

If there are at least two heaps of size at least two, call this property P, then [firstly] if the position
is exactly (2, 2) then C loses as just shown; [secondly] otherwise, there is at least one move that
preserves property P. We can assume inductively that simpler positions with property P are won for the
coalition, so A or B to move have at least one winning move. C to play must either play to a simpler
position with property P and therefore lose inductively, or to a position with exactly one heap of size

2. A to play can reduce this heap to either one or zero; when all heaps have size 1, the number of
remaining moves is exactly the number of heaps, so the winner is determined exactly by the remainder
when that number is divided by three; A can ensure that, after his move, that remainder is not 2 and
therefore that C does not win.

If there is no heap of size > 1, then C wins or loses depending, as above, on the remainder when
the number of heaps is divided by three; specifically, C wins if and only if that number is 3n + 1 for
some integer n when C is to move. If there is one larger heap, then C can force a win only if it is his
move, and then only if he can leave 3n singleton heaps after the move; that is, if the number of single-
ton heaps before his move is either 3n [so that removing the entire large heap wins] or 3n −1 [so that
removing all but one of that heap wins]. C cannot force a win in any other position.

31 The explanations are bookwork. In (a ), we are initially playing a game equivalent to Nim on heaps 4, 1,
3 and 5 [alternate gaps!], Nim-sum 3, and you win by moving the marked coin as far as it will go; with
the fixed coin, the heaps are 4, 1 and 2, Nim-sum 7, and you win by moving the rightmost coin left by
one square. In (b ), we are playing Nim on the gaps between opposite-coloured pawns, so with heaps of
6, 0, 5 and 2, Nim-sum 1, so White has to make the gaps 7, 1, 4 or 3 respectively, thus there are four
winning moves, three involving moving away from the opponent, but the most direct win is to move the
third pawn one square to the right. If the pawns don’t necessarily alternate, then nothing much happens
if only two pawns of the losing colour are ever adjacent [unless one has some room near the edge]; but
if there are three with some space between, or two near the edge, then the otherwise-losing side can lose
a move without changing the gaps by moving the ‘protected’ pawn in the middle. Fine details left as an
exercise.

32 Cram is impartial, so any position is equivalent to a Nim heap.

For (a), we can construct the Grundy sequence very much as we did for Kayles [details left to the
reader—indeed, Cram played on strips is the octal game . 07, compared with Kayles . 77]; it is 0, 1, 1,
2, 0, 3, 1, 1, mumble, 3, and a strip of length 10 is equivalent to a Nim heap of size 3. [We don’t need
the result for 9, as we can’t move to it from strip 10.]

For (b), the simplest solution is to note that wherever the first player plays, the second player can
play so as to block off a 2×2 corner, leaving a strip of five squares along the edge. This must leave one
more move for each player [obvious, but the result from (a) also gives this], so the 3×3 board is a
second-player win, equivalent to a Nim heap of size 0.

33 From a heap of size 13, the available moves are to split into heaps of sizes 1 and 12, or 2 and 11, or 3
and 10, or 4 and 9, or 5 and 8, or 6 and 7. Using the table, these moves result in positions of Nim values
0 ⊕ 1 = 1, 0 ⊕ 2 = 2, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1, 2 ⊕ 2 = 0 and 1 ⊕ 0 = 1, respectively. So G(13) =
mex (1, 2, 1, 1, 0, 1) = 3. Similarly, from size 14, the moves are to heaps of sizes 1 and 13, or ... or 6 and
8 (but not 7 and 7), with corresponding Nim values of 0 ⊕ 3 = 3, 0 ⊕ 1 = 1, 1 ⊕ 2 = 3, 0 ⊕ 0 = 0,
2 ⊕ 1 = 3 and 1 ⊕ 2 = 3, so that G(14) = mex (3, 1, 3, 0, 3, 3) = 2. A single heap of size 13 should be
split 5 and 8, as that was the combination that produced the 0 in the mex.

Given heaps of sizes 13 and 14, the routine way to win is to note that the position is equivalent to
Nim with heaps 3 and 2, which is won by taking 1 from the heap of size 3. The (only) combination that
produced a 2 in the mex for G(13) was 2 and 11, so a winning move is to split the 13 into 2 and 11. As
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it happens, there are also some 3s in the mex for G(14), so splitting off 1, 3, 5 or 6 from the heap of 14
also wins.

From a heap of 27, there are lots of possible moves, so we have to hope that we find the win
quickly. If 13+14 doesn’t work, then the next to try is 12+15, for which we need G(15) =
mex (2, 3, 0, 2, 2, 0, 2) = 1 [details left as an exercise, but once you’ve done 13 and 14 it should get rou-
tine]. Luckily, G(12) ⊕ G(15) = 1 ⊕ 1 = 0, so that’s it, the opponent should have split 27 into 12 and
15. [For the curious, or persistent, G(27) = 4, and 1 and 26, 4 and 23 and 7 and 20 also win.]

34 A single sweet is ‘dead’, so has Grundy value zero. From two sweets, the only ‘move’ is to eat both
sweets, which is ‘dead’, so the Grundy value is 1. From three sweets, you may move to two sweets by
eating one, or you may ‘kill’ the pile by eating all three; as the corresponding Grundy values are 1 and
0 respectively, the Grundy value is mex (1, 0) = 2. From four sweets, the only move is to three, and
mex (2) = 0. From five sweets, the only move is to four, and mex (0) = 1. From six sweets, the only
move is to five, and mex (1) = 0, and so on. So the Grundy sequence is 0, 1, 2, 0, 1, 0, 1, 0, 1, . . . .

So three aniseed balls, four bon-bons, five comfits and six dragees have Nim-equivalent values of
2, 0, 1 and 0 respectively. The only winning move is to change the 2 to a 1 by eating one aniseed ball.

From there, the winning strategy is ‘easy’. Because of the “She loves me, she loves me not”
nature of the Grundy sequence, you can play anything you like as long as you never leave just three
sweets of the same kind, as this is a guaranteed winner among ‘heaps’ of Grundy values 0 or 1 [like
having one heap of size two and lots of singletons when playing Nim, you control the parity of the
number of singletons]. When your opponent leaves such a threesome, as it came from one of size four,
worth 0, you must immediately eat all three sweets to kill that sort.

[I found this problem in the Putnam competition, an annual ‘Olympiad’-style test for students in
the USA. As they didn’t know about Grundy numbers, it was described as ‘difficult’. Our students
found it easy! Some students were worried about whether they could eat ‘both’ sweets from a pile of
three; I don’t think English allows such an interpretation, but if it did, it wouldn’t matter as the one
sweet remaining is ‘dead’. Note also that ‘strategy’ means rather more than ‘move’; it means explain-
ing what you intend to do for the whole game, as opposed to just in the current position.]

35 We can easily draw up a table. Denote by Pn a Polite Nim heap of size n . Then the moves in Pn are to
Pk where 2

1
� � n k < n .

n permitted k corresponding Grundy numbers mex
1 0
2 1 0 1
3 2 1 0
4 2, 3 1, 0 2
5 3, 4 0, 2 1
6 3, 4, 5 0, 2, 1 3
7 4, 5, 6 2, 1, 3 0
8 4, 5, 6, 7 2, 1, 3, 0 4
9 5, 6, 7, 8 1, 3, 0, 4 2
10 5, 6, 7, 8, 9 1, 3, 0, 4, 2 5
11 6, 7, 8, 9, 10 3, 0, 4, 2, 5 1
12 6, 7, 8, 9, 10, 11 3, 0, 4, 2, 5, 1 6
13 7, 8, 9, 10, 11, 12 0, 4, 2, 5, 1, 6 3
14 7, 8, 9, 10, 11, 12, 13 0, 4, 2, 5, 1, 6, 3 7

So the Grundy sequence is 0, 1, 0, 2, 1, 3, 0, 4, 2, 5, 1, 6, 3, 7, . . . , and we observe that
G(P2n +1 ) = G(Pn ) and G(P2n ) = n . We can now see why this pattern happens: For even n , the Grundy
numbers [third column] are some permutation of the integers up to 2

1
� � n − 1, so the mex is 2

1
� � n . When we

go to the next row, the first of these numbers drops out and is replaced by 2
1

� � n , so the mex is the number

Turn Over
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that has just dropped out, i.e. G(P
2
1

� � n ). When we go to the next row again, that mex comes back in, so
we have restored the pattern. [You weren’t asked for an explanation!]

Faced with P12 + P13 + P14 , the corresponding Grundy numbers are therefore 6, 3, 7, so the position
is equivalent to playing Nim with heaps of those sizes. We first work out 6⊕3⊕7 = 2, then 6⊕2 = 4,
3⊕2 = 1 and 7⊕2 = 5, so there are three winning moves, in which we play the heaps to smaller heaps of
values 4, 1 and 5 respectively. Looking back at the table, the corresponding k values are 8, 11 and 10,
so we have a choice of playing P12 → P8 , P13 → P11 or P14 → P10 , or in other words of taking 4
matches from the heap of size 12, 2 from the heap of size 13 or 4 from the heap of size 14.

36 (a ) Note first that when one end ‘burns’ away, the game is exactly two-heap Nim, so is lost if and only
if the two remaining heaps are equal. From a position where p = r ≠ q , the player to move must
reduce either p or r ; by symmetry, we can assume p . So, after a move, the new position is p ′ , q ,
r where p ′ < r . Three cases: if p ′ = 0, then as q ≠ r the second player wins by equalising the
remaining heaps; if p ′ = q , then the second player wins by removing the r -heap; otherwise, the
second player wins by removing the same number of matches from the r-heap, moving to a posi-
tion p ′ = r ′ ≠ q which we can assume to be lost for the first player by induction. So in all case,
the first player loses. If the condition p = r ≠ q does not hold in the initial position, then a very
similar argument shows that the first player can move to bring it about, so winning.

(b) In the position 1, p , q , 1, the first move must take away one of the ends, leading to 1, p , q or p , q ,
1. But 1, p , q is lost if and only if q = 1 and p ≠ 1, while p , q , 1 is lost if and only if p = 1 and
q ≠ 1. So, 1, 1, 1, 1 is lost, 1, p , q , 1 is lost if p ≠ 1 and q ≠ 1, and all other positions with 1 at
both ends are won. So, 1, p , q , r for r > 1 is won if p and q are both equal to 1 or both greater
than 1, by reducing r to 1; and is won if p > 1 but q = 1 by reducing r to zero. This leaves the
case 1, 1, q , r , with q and r both greater than 1. This is lost if r = 2, as every move reduces it to a
previously analysed won postion; otherwise, it is won by reducing r to 2. Summary: If r = 1,
then the position is lost unless exactly one of p and q is equal to 1; if r > 1, then all positions are
won except 1, 1, q , 2 with q > 1.

(c) Faced with 2, 3, 4, 5 we see from the above that reducing either end to 0 or 1 leads to a position
won for the other side. So the [only] winning move is to reduce the 5 to 2, leaving 2, 3, 4, 2.

37 The rule for calculating Grundy numbers given in the question says that we can ignore the rightmost
coin if it is a tail, and that if it is a head, then the row is equivalent to the disjunctive sum of the row
with that coin removed and a *n , where n is the length of the row. The first part follows from the rules
of the game; a rightmost tail can never be flipped, so it plays no part at all in the game and might as
well be removed [and then we can appeal to induction]. So we need only consider the case where the
rightmost coin is a head.

Consider the game consisting of the given Turtle row, another identical Turtle row except that the
rightmost coin is removed, and a Nim heap of size n . We need to show that this is a zero game, i.e. that
to every move there is a winning counter. To every move in the shorter Turtle row there corresponds
the same move in the first n −1 coins of the longer, and vice versa, resulting in a simpler position of the
same sort which can be assumed to be zero by induction. To flipping the rightmost coin [only] there
corresponds the removal of the entire Nim heap, and again vice versa, resulting in a zero position as
there are two equivalent rows. To flipping the rightmost coin together with the k th, 1 k < n , there
corresponds the move to *k in *n , and again vice versa; in the resulting position, there are two shorter
Turtle rows that differ only in the k th place, whose Grundy numbers are given [inductively] by the rule
given in the question, so that they are together equivalent to the *k , so this position too is zero. That
covers all moves, establishing the result.

In the given position, coins 1, 6, 7, 8 and 10 are heads, so its Grundy number is 1⊕6⊕7⊕8⊕10 =
2, as required. If we flip coin 1, this would create a *(1⊕2) = *3, but we can’t flip coin 3. If we flip
coin 6, this would create a *(6⊕2) = *4, so flipping coins 6 and 4 wins. If we flip coin 7, this would
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create a *(7⊕2) = *5, so flipping coins 7 and 5 wins. If we flip coin 8, this would create a
*(8⊕2) = *10, so flipping coins 8 and 10 wins. If we flip coin 10, this would create a *(10⊕2) = *8, so
flipping coins 10 and 8 wins, as just seen. So there are three winning moves: 6 and 4, 7 and 5 or 10 and
8.

38 In Bond viewed as a Kayles-like game, the legal play is to knock down exactly three skittles from any-
where in a row of at least three. So, in a row of 11, the legal moves are to rows of 8, or 7 and 1, or 6
and 2, or 5 and 3, or 4 and 4, with Nim values 0, 2 ⊕ 0 = 2, 2 ⊕ 0 = 2, 1 ⊕ 1 = 0 and 1 ⊕ 1 = 0, respec-
tively, so the mex is 1.

Given heaps (rows) of sizes 8, 9, 10 and 11, Grundy numbers 0, 3, 3, 1, the most obvious win is to
turn the 1 into a 0, for example by taking the end three skittles from the row of 11. [There are several
other ways of winning.]

From the ‘equivalent game’, we see that the Treblecross position consisting of a gap of n squares
between two X’s is equivalent to a Bond heap of size n − 2. So the given position is equivalent to heaps
of 4 and 9 in Bond, Nim equivalents 1 and 3, so a winning move should turn the 3 into a 1. In Bond,
from a row of 9 we can move to 6, or 5 and 1, or 4 and 2, or 3 and 3, with Nim values 2, 1, 1 and 0
respectively, so we win by playing to 5 and 1 or 4 and 2 in Bond, that is to gaps of 7 and 3 or 6 and 4
between X’s in Treblecross. So the winning moves in the given position are to place the next X in the
4th, 5th, 7th or 8th square past the middle X.

39 In 0.6, you must take one man from a squad, leaving a non-empty squad behind, and you may split the
squad into two if you like. [So this game is Officers.] From a squad of 11, the legal moves are to 10, to
9 and 1, to 8 and 2, to 7 and 3, to 6 and 4 and to 5 and 5. Using the table, the moves result in positions
with Nim values 3, 2 ⊕ 0 = 2, 1 ⊕ 1 = 0, 3 ⊕ 2 = 1, 2 ⊕ 0 = 2 and 1 ⊕ 1 = 0, respectively. So G(11) =
mex (3, 2, 0, 1, 2, 0) = 4. There are two 0s in that list, corresponding to 8 and 2 or 5 and 5; so the win-
ning squads are 2, 5 or 8.

In Fish Kayles, you may take one skittle from the end of a row, corresponding to digit 3 (you may
leave no heap or one heap, but not two); and you may take two skittles from anywhere, corresponding
to digit 7 (leave no heap, one heap or two). So FK is 0.37, first cousin to 0.6 and with Grundy sequence
1, 2, 0, 1, 2, 3, 1, 2, 3, 4, .... So an FK row of length 9 is equivalent to an Officers squad of size 10.
From the table, we see that in Officers, the moves from 10 are to squads 9, 8 and 1, 7 and 2, 6 and 3 or 5
and 4 with respective Nim values 2, 1, 1, 0 and 1, so the only winning move in Officers is to 6 and 3.
The corresponding move in FK is to 5 and 2; so faced with a row of 9, the (only) winning move is to
knock down the 3rd and 4th skittles from (either) end.

40 The Grundy table is
�������������������������������������������������������������������

7 8 6 9 0 1 4 5�������������������������������������������������������������������
6 7 3 1 9 10 3 4�������������������������������������������������������������������
5 3 4 0 6 8 10 1�������������������������������������������������������������������
4 5 3 2 7 6 9 0�������������������������������������������������������������������
3 4 5 6 2 0 1 9�������������������������������������������������������������������
2 0 1 5 3 4 8 6�������������������������������������������������������������������
1 2 0 4 5 3 7 8�������������������������������������������������������������������
0 1 2 3 4 5 6 7�������������������������������������������������������������������
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[Work out from the bottom-left corner; each number is the mex of those left, down, or diagonally left
and down from it. Eg, the value 6 just below the 8 in the main diagonal is the mex of (going left) 7, 2,
3, 5, 4, (going down) 0, 4, 3, 5, (going diagonally) 2, 5, 0, 1; in which we see 0, 1, 2, 3, 4, 5 but not 6.]
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In the given initial position, the Grundy numbers of the initial counters are 8 and 4; a winning
move therefore is to ‘balance’ the numbers by playing the 8-counter to a square of value 4, by sliding it
three squares left or down. [That is the systematic win; there is also, as it happens, a ‘sporadic’ win by
sliding the 4-counter five squares down to a square of value 8.]

The given initial position has Nim-equivalent value 8⊕4 = 12. As no square on the board has
value 12, any third counter must leave the position unbalanced, so that the position has non-zero value
and is a first-player win.

41 First part: bookwork. Note that 0.45 and 0.177 are first cousins. In 0.177, the moves are to take one
singleton match, or to take two or three matches from any heap with the option of splitting the result.
So the moves from a heap of 11 are to 9, 8 and 1, 7 and 2, 6 and 3, 5 and 4, 8, 7 and 1, 6 and 2, 5 and 3
or 4 and 4, with Nim values 4, 5, 0, 3, 1, 4, 0, 0, 1 and 0 respectively, and a mex of 2, as required. [The
Grundy sequence for 0.45 would be the same but with an extra 0 at the beginning.]

So, in 0.45, heaps size 8, 9, 10 and 11 have respective Nim equivalents of 1, 4, 4 and 3 respec-
tively, and we have to find a move to Nim value 1 from the heap of size 11, or equivalently from the
heap of size 10 in 0.177. In 0.177, the moves from 10 are to 8, 7 and 1, 6 and 2, 5 and 3, 4 and 4, 7, 6
and 1, 5 and 2 or 4 and 3, with respective Nim values 4, 0, 0, 1, 0, 1, 0, 2, and 0. The moves that lead to
a value of 1 are heaps 5 and 3 or a single heap of 7; back in 0.45, the corresponding moves are (from
the heap of 11) to take one match and split to 6 and 4 or to take two matches and split to 8 and 1.
[There may accidentally be winning moves in the other heaps also.]

In 0.177, the heaps have values 4, 4, 3 and 2, so a winning move would be to play from the heap of
10 to heaps 5 and 2. By accident, there was also a move in the heap of 11 to a Nim value of 3 by play-
ing to heaps of 6 and 3; there may also be winning moves in the heaps of 8 and 9.

42 Explanations—bookwork [but a good test of your understanding!]. .04, .042 and .0421 all have identi-
cal sequences, as the extra moves are ineffectual [they amount to doing extra things using the skittles
(or whatever) at the end of the rows, which would be dead anyway—try it!]; they are all first cousins to
.007, which will have the same sequence but shifted left one place.

The sequence for .04 starts 0, 0, 0, 1, 1, 1, 2, 2, 0, 3 [left as an exercise]. So rows of lengths 8, 9,
10 have combined Nim value 2⊕0⊕3 = 1; the simplest win is to make the row of 10 have value
3⊕1 = 2, by taking away the second and third skittles.]

43 Take the components in turn:
tree: The RH branch is worth (2⊕2)+1+1 = 2 as far as the main fork. The top branch is also

worth 2 at that fork. The LH branch is worth 3 to the same fork. So, using the tree principle, the
whole tree is worth ([(2⊕2⊕3) + 1]⊕2) + 1 = (4⊕2) + 1 = 7.

house: Everything except the TV aerial is in loops, with a total of 11 edges, so can be fused into 11
petals, total value 1. The cross-bars on the TV aerial come in pairs, so can be ignored, and the rest
is worth (5⊕1) + 1 = 5, using the tree principle, so the whole house is worth 5⊕1 = 4.

door: Fuses to 3 petals, worth 1.
car: The steering wheel and the aerial are worth 1 each and cancel. The other 21 edges can be fused

into petals, total value 1.

So, the whole picture is worth 7⊕4⊕1⊕1 = 3. To win, we must chop the tree down to value
7⊕3 = 4, or the house up to value 4⊕3 = 7, or the door or the car to value 1⊕3 = 2. So, one winning
move is to chop down either door jamb, and there may be something clever in the house or the car (in
either case, you’d have to break up the loops, so a good place to try might be somewhere in the house
roof, effectively lengthening the aerial, or somewhere like the car radiator, bonnet or boot—left as an
exercise). The systematic win is to chop down part of the tree.
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We work up from the root. If the whole tree is worth 4, the part above the lower fork is worth 3,
but the current branches meeting there are worth 2 and 4, so we must either chop the short left branch to
3⊕4 = 7 (impossible), or the main branch to 3⊕2 = 1, and hence the part above the upper fork to 0.
The branches meeting there are worth 3, 2 and 2, so we must chop the LH upper branch to 0 or either
other branch to 1. This can be done by lopping off the whole upper LH branch, or the RH branch leav-
ing just one component, or by plucking the top apple. Aesthetically, this last is clearly the best move!

44 Choosing a3 leaves just the top two rows. Suppose these have lengths p and q respectively. If
q = p −1, then any move disrupts this relationship; any move in the second row makes q less without
changing p , while any move in the top row makes p and q equal. Conversely, if q ≠ p −1, then there is
a move which creates this relationship; if q < p −1 then you can take p − q − 1 squares from the top row,
while if q p you can take q − p + 1 squares from the second row. Since the (only) final position with
p = 1, q = 0 is of this form, we see that a two-row position is lost for the player to move if and only if
row 2 is one shorter than row 1, and hence the result.

Choosing b2 leaves row 1 and column a. Any further move is equivalent to playing Nim on heaps
of their lengths, less one for the poisoned square; so the resulting position is lost if and only if they are
balanced.

In the given position, there are seven possible moves. Now, c1, a3 and b2 should not be played,
by the rules just given; b3 and d1 lose to c1 and a3 (or b2) respectively; b1 loses to a2 and a2 to b1.
Hence, this position is lost for the player to move.

In a rectangle larger than 1×1, consider the effects of taking the bottom rightmost square. If this
wins, then we have nothing more to prove. If it loses, then there must be a winning reply; but this reply
was also available to the first player, and would have resulted in the same position (including the bottom
rightmost square). So the first player has a winning move (which either is or isn’t taking the bottom
righmost square!).

As we have just seen, a winning move from the 4×3 rectangle is to take b3, leaving the reflexion
about the long diagonal of the position we analysed as a loss.

45 (a ) A stalk of height n has Nim value n . For sufficiently large n (for example, more then the number
of edges in the rest of the picture), this stalk cannot be balanced by the Nim value of the rest of the
picture, so the total picture must have non-zero Nim value and be won for the player to move.

(b) If chopping the blue edge wins, there is no more to prove. Otherwise, there is a good reply, say e,
to chopping the blue edge; let Blue chop e, and continue to play as though the blue edge were not
present. Red can either acquiesce in playing as though the blue edge were missing [as indeed it
may be], or at some point must chop an edge which depends on the blue one [necessarily not the
blue edge itself]. At this point, chopping the blue edge wins, by construction.

(c) For example, put all the blue edges on top of a green [purple] stalk.

46 Take the components in turn:
tree: Working down from the top, we have alternately to ordinary-add 1 to go down the trunk, and

Nim-add 2 to incorporate the side-branches. So, we successively get 1, [Nim-add 2] 3, [add 1] 4,
[⊕2] 6, [+1] 7, 5, 6, 4, 5, 7, 8, 10, 11, 9, 10, 8, 9, 11, 12, 14, 15, 13, 14, 12, 13. The tree has value
13. [You might find this calculation easier in binary, where Nim-adding 2 means swapping the
next-to-rightmost bit: 01, 11, 100, 110, 111, 101, 110, 100, 101, 111, 1000, 1010, 1011, 1001,
1010, 1000, 1001, 1011, 1100, 1110, 1111, 1101, 1110, 1100, 1101. At the risk of flogging the
example to death, note that the bottom two bits repeat in a cycle of length 8, and that once round
each cycle a one is carried to the next bit to the left, so each cycle has values 4 more than the
previous cycle; this makes it easy to calculate the Nim value of a tree of this form of any height.]

Turn Over
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dog: Can be fused to an odd number of petals apart from the head and neck (worth 2) and the tail
(worth 1), so total value is 1⊕2⊕1 = 2.

girl: The head fuses to two petals, and then there’s the ponytail and the arm, so from the neck upwards
she’s worth 1⊕1⊕1⊕2 = 3. Treeing her chest makes 4; her skirt fuses to 4 petals, cancelling each
other out; finally, the 4 trees through her leg to 5.

light: The shade and bulb fuse to 6 petals, together worthless. This is on a stalk of three com-
ponents, so the light is altogether worth 3.

So the total picture is worth 13 ⊕ 2 ⊕ 5 ⊕ 3 = 9. Since we clearly can’t get such large values from
the dog, girl or light, we must chop down the tree to value 13 ⊕ 9 = 4. This is done by working up the
tree from the bottom, alternately subtracting 1 to go up and Nim-adding 2 to get past a side-branch, until
we reach zero. So, from 4 we get successively 3, 1, 0 [but this is uselessly at a fork, so there is no
corresponding chop], 2, 1, 3, 2, 0 [now having gone past the 4th side-branch]. There is a unique win-
ning move, which is to chop the tree at the 5th segment up the trunk. [Left as an exercise: check that
the resulting stump indeed has value 4.]

47 First part is bookwork. To evaluate the given position, it makes life easier if you appeal ruthlessly to
symmetry. The two lanterns are [supposed to be] the same, so cancel. Likewise the girls arms, the hair-
ribbon, any two of the three blooms on the flower, and the topmost branch of the tree with the branch
opposite to it. Then the girl’s skirt and face fuse to an even number of edges, so can be deleted. So, the
girl is *4 [two lengths of hair plus body plus leg(s)], the flower is *3, the bridge is an odd cycle which
therefore reduces to *1, and the tree consists of a *3 on the left and a *2 on the right [easy exercise],
combining to a *1 on a trunk making *2. Tree, flower and bridge therefore sum to zero, and the whole
position is worth *4.

A simple winning move is therefore to zap the girl by chopping off her leg(s). I don’t think there
is any other winning move! [But chopping the top apple or a bridge-span next to the flower come
close.]

48 First part—bookwork. From a row of 9, you can move to 7, to 6 and 1, to 5 and 2, or to 4 and 3 with
respective Nim values of 1, 3, 1 and 3, and a mex of 0. From a row of 10, you can move to 8, to 7 and
1, to 6 and 2, to 5 and 3 or to 4 and 4, with respective Nim values of 1, 1, 2, 1 and 0, and a mex of 3. To
win with three rows of lengths 8, 9 and 10, so with Nim values of 1, 0 and 3, you have to find a move to
value 3 in the row of 8, to value 2 in the row of 9, or to 1 in the row of 10; there are several ways (left
as an exercise) of doing this.

The Boxes position given is a Dawson’s Vine equivalent to a Dawsons’s Kayles row of length 7
(the number of internal tendrils). There are four winning moves (two symmetric pairs), corresponding
to the lines c56, e56, f56 and h56 using the notation of Q49.

49 (a ) The move c34 sacrifices two boxes by b34 and cd3, leaving three long chains, one down the def
columns, one snaking round between b and e in the bottom two rows, and one along the top lead-
ing to a still open position in the left column. There is also a *1 in the bottom left corner. In the
open position, there is really just one move, a34 (ab3 is equivalent impartially, but sacrifices a
box needlessly), so this is also a *1, and the total is zero, so the player who is to move after c34
loses. It’s nice to see the theory confirmed, so we note that in the diagrammed position 23 moves
have been played, so the second player is to move, and wants to create an odd (as there are 30
dots) number of chains, such as three. After a34, the (originally) second player sacrifices the bot-
tom left corner box by a12 (or ab1), then drops four more boxes in the first two long chains, win-
ning by 13 boxes to 7. But ....

In the version of this question as actually set in 1989, the right-hand column of four boxes was
missing, so that the winning margin was 9 to 7. Unfortunately, in the resulting diagram, instead of
a34, the second player can sacrifice with ab4, and after the replies b45 and cd5, sacrifice the
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bottom left corner by a12. The first player must then play ab3 (after ab1) to throw the move,
sacrificing two more boxes. So the first player loses the two boxes sacrificed initially, two more
boxes in the a -column, and two boxes in each of the first two long chains, total score 8 all. No-
one noticed this possibility for five years! So, with best play, the loser squeezes one more box
than above, and the total score is 12 to 8.

(b ) The reply to b34 is cd3, throwing the two middle boxes but switching the move. Everything
above is then reversed, and the player to move in the diagram loses by 12 to 8 [or 13 to 7 by miss-
ing the ab4 idea].

(c ) The move a34 is a blunder. The other player must attempt to keep the number of long chains
down to two, so must prevent the split by c34. This can be achieved by the move bc2, sacrificing
two boxes in order to make the central boxes part of the long chain running down to near the bot-
tom right corner; d12 and (less obviously) ab3 or a23 have the same effect. After the replies bc1
and c23, the first player has nothing better than ab3 (or a23), sacrificing a box; the other player
then gives up the bottom left box, and we are left with just the two long chains. The other player
wins by 15 to 5. You might wonder whether the first player does better with b34 instead of ab3,
forcibly creating the third chain, and hoping for some extra enforced sacrifices; but no, the other
player takes all the five available boxes, then sacrifices the bottom left, and still wins by 15 to 5.

It’s worth noting that after a34, the first player has converted the central position into a Kayles
vine with two nearby tendrils, and so equivalent to K2 , Nim value *2. The other player wins by
zapping one (but not both!) of the tendrils, giving a *1 to add to the *1 in the bottom left. Again,
it’s nice to see the theory confirmed!

50 First part—bookwork. In a position with n chains of 3, and no other moves, the player to move must
commit suicide in one chain. Suppose the resulting position is worth a swing of f (n) boxes to the player
to move. This player has the choice between grabbing all three boxes, but then having to move first in
the next chain (thus losing f (n −1)), and taking one box but sacrificing two to make the other player
move first in the next chain. So

f (n) = max (3 − f (n −1), −1 + f (n −1)).

Clearly, f (1) = 3, so f (2) = max (0, 2) = 2, f (3) = max (1, 1) = 1, f (4) = max (2, 0) = 2. Also, if
f (n −1) = 1, then f (n) = 2 and vice versa, so all further values of f are 1 or 2, according as n is odd or
even.

51 In (a), if we use the notation of Q49, there are 7 moves, ab2, ab3, bc2, bc3, a12, a23 and b12. Of
these, bc3 and b12 are suicides, while a23 and ab3 are equivalent, so only one of them needs to be
considered. Taking the remaining four moves in turn:

ab2 divides the board into a chain of length 3 and a box with two sides already drawn, worth *1;
after ab3, the non-suicidal replies are a12 (creating a chain of length 4) or ab2 or ab3 (both

sacrificing a box to leave a chain of length 3), all therefore leading to *0, or bc2 (sacrificing two boxes
to reach a position in which the only non-suicide is ab2), thus leading to *1, so ab3 leads to a position
whose Nim value is the mex of 0 and 1; i.e. to *2;

bc2 sacrifices two boxes to reach a position in which ab2 and a12 sacrifice a box to reach a *1
while ab3 and a12 reach the *1 considered previously, so bc2 leads to *0 (and note that playing bc2 on
move 1 is the way to ensure that no long chain is ever created in this position); and

after a12, the only non-suicidal moves are ab3 and a23, both giving a chain of length four, so a12
leads to *1.
Thus, the Nim value of (a) is the mex of 1, 2, 0 and 1; i.e. 3, as required.

In (b), ab1, de1, a12 and e12 all lead to a chain of three attached to a one-sided box, the same
position as that reached in (a) after a12, so these positions are worth *1, while b12 and d12 are sui-
cides, and c12 sacrifices two boxes to reach a *0 (by symmetry, or as *1 + *1). The mex of 0 and 1 is 2,
so position (b) is worth *2.

Turn Over
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The position shown in (c) has three components: a *3 in the top-left corner, a *2 down the right-
hand side, and a long chain of length 8 down the middle. So, the good move is to play to *2 in the
top-left corner, by filling in either of the edges from the extreme top-left corner dot (ab5 or a45).

Note that there are 25 dots, and 17 lines already drawn, so the second player is to play, and wants
to create just one more long chain. Each ‘live’ component is now in a state where the next move will
determine whether or not a long chain will result, so the other player will have to decide for one com-
ponent, and the second player can take the opposite decision for the remaining component, thus ensuring
exactly two long chains.

52 First part—bookwork. The position of (a) was discussed after the move ab3 [with what is now our
standard notation!] in part (a) of the previous question. So the position (b) consists of *1 [derived dur-
ing the analysis of (a)] in the top left-hand corner, position (a) [rotated through 90°] worth *2 in the top
right-hand corner, a long chain, and a *1 in the bottom right-hand corner. So the winning move is to
convert the *2 to 0, by the move cd5. Sacrificing the very top right-hand box also wins, but loses a box
unnecessarily; every other move loses. If the opponent instead of cd5 sacrifices the bottom right-hand
box, then we are left [after capturing that box] with a *2 and a *1; the winning move is to convert the
*2 to a *1 by the two-box sacrifice d34. Again, every other move loses.

To compare with theory, note that there are 25 dots, and 19 lines have been drawn, with no cap-
tures, so the originally-second player is to move in position (b). So the player to move should be trying
to make the number of long chains even. There is one long chain already, and the only place to create a
second is in the rotated version of (a) in the top right-hand corner. The player to move should thus
create a long chain there, and the other player should, given the chance, prevent this.

53 The first part is bookwork.

In the left-hand position, there are 16 dots, 11 lines have been drawn, so it’s the second player to move,
wanting to force an odd number of chains. There is already one chain along the top, and no way of
creating a second from those five boxes. So it is necessary to prevent a chain in the bottom right. You
can either sacrifice two boxes by playing c23 with our standard notation, or create a four-box loop by
playing bc1 or cd1. Exercise: show that these all win by five boxes to four.

In the right-hand position, there are 16 dots, 12 lines drawn, so the first player is to move, with an
even number of chains wanted. But the second player has [presumably!] just suicided in the top left.
There is no way of getting a second chain, so the good move is to force an extra double cross; you
should decline the offered boxes, and play ab4 in the top row, winning by six boxes to three.

54 Note first that if there are no chains or loops, then C and L are both zero, N = B, and since B > 3 the
condition

C + 2L < 4
1

� � B − 2
1

� � N + 1

fails, so there is nothing to prove. If there is at least one chain or loop, then the impartial game will be
won by the usual double-cross theory. In the worst case, the impartial winner will lose all the N uncom-
mitted boxes, two boxes for each of the chains except the last, and four boxes for each loop, so the
impartial loser may score as many as N + 2(C −1) + 4L [or two less than this if C = 0 but L > 0]. So the
impartial winner can certainly [with best play!] win the partisan version provided this score is less than
2
1

� � B, that is, if

N + 2(C −1) + 4L < 2
1

� � B

which easily re-arranges to the above form.

To construct a case where the outcomes differ; try B = 4 [as we are given B > 3], then we need
N + 2C + 4L 4. However, any loop involves all four boxes, and the winner picks up all four; so we
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must have L = 0. There is no room for two chains, and if C = 1, then N 1, so N + 2C 3, and there
can be no differing outcome there. So there must be no loops or chains. The simplest position to
analyse is the 2×2 square [9 dots] with the central ‘cross’ drawn in, so dividing the board into four
separate regions each of one box. This is clearly a second-player win in the impartial version, but a
two-all draw in the partisan version. Left to the reader to find cases where the other player actually
wins—there are easy examples in a five-box strip [2×6 dots].

55 The ‘explain’ bit is bookwork. The d5, d6, d7 complement problem starts with a count of 12 and
finishes with a count of 16, so is insoluble.

In the d7 complement problem, there is an actual slack of 12, but d7 must be cleared between first
and last move, costing at least 8, so only 4 is usable by other moves. Since the given 6-pack costs 4, all
other moves must be free, which rules out c2–e2 and a3–a5 of those given.

In the d6, d7 problem, the slack is 2. The first move must be d4–d6, and the only way of getting a
peg to d7 is by playing d5–d7, clearing d6 again. Since any further move involving d6 or d7 other than
d4–d6 cost more than the slack, in particular all ways of clearing d7, the result follows. In addition, all
moves clearing a4 or g4, other than those given, cost 4 and so cannot be used.

56 (a ) For example, start with c4 − c2. Now clear out the ab wing with a 6-pack; this creates the
catalysts to clear out the top and bottom wings also by 6-packs, and then the fg wing similarly.
Now clear the 5th rank using a 3-pack, and finish off with e3 − c3 and e4 − c4 − c2. Many other
solutions.

(b ) Start with an exercise in Reiss classification. You can count pegs; but it’s easier to imagine
appropriate moves and packs. From Weeping Willow, chase the a3 peg as far as it will go:
a3 − a5 − c5 − c3 − e3 − e5 − g5. This leaves 3-packs in the g file and the 1st rank, which can be
ignored, and a single peg in d2. So, since the standard board is self-complementary, the single
vacancy start must be in d2 or the equivalent. As we want to clear out the top of the board, the
most sensible equivalent is probably d5. So, start with d5 empty. Clear out the top wing with a
6-pack, and the 5th rank with two 3-packs. This leaves the first four ranks fully occupied, and
everywhere else empty (this is a good position to aim for; imagine unplaying moves like b3 − b5).
Clear c −e4 with a 3-pack, and now it’s easy: just play b3 − b5, c2 − c4, e2 − e4 and f3 − f5.

It’s also possible, though harder (unless I’ve missed a trick!), to reach WW from the d2-empty
position. Start with d4 − d2 and b3 − d3. Next some ‘put and take’ routines: c5 − c3, c2 − c4
(clearing squares three apart provided the intervening squares are opposites), clear b4 and e4 simi-
larly, and then a5 and d5. Now clear e5 − g5 with a 3-pack, clear the top wing with a 6-pack,
finishing with f3 − f5 and e2 − e4.

57 Reiss classification! The usual starting position is in the same class as its complement, and hence (mak-
ing an unmove) as the position with pegs at (for example) b4 and c4. Now unmove c6–c4 and move
instead c5–c7 to get one peg to c7. The other peg has to be on the intersection of diagonals like those
through b4, and is hence at one of the places given.

Many possible solutions. For example, start with a 3-pack on e4–6, then clear out the f–g wing
and the 1–2 wing with 6-packs, and d5–7, then c5–7, and c–e3 with 3-packs to reach the suggested
position. [Note: you can’t clear out c–d,5–7 with a 6-pack, as the catalyst is missing.] Now there is a
neat triple-move: a3–c3–c5, a4–c4–c6 and a5–c5–c7 to finish off.

58 (a ) For example, clear out the second row with a 3-pack, then the left, top and right wings with 6-
packs, then the fifth row with a 3-pack. Now jump the fourth row down over the third row, clear
out the second row again with a 3-pack, and jump e1 to c1. Many other solutions.

Turn Over
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(b) Exercise in Reiss classification! We can remove all the pegs in the e -file without affecting the
class; the resulting two-peg position has even occupancy in each of the NW to SE diagonals, and
so is in a different class from any single-peg position [which must have just one odd occupancy].
Since the standard board is self-complementary, it is also in a different class from any single-
vacancy position. So Letter J cannot be reached from any such position.

59 Suppose that neither m nor n is divisible by 3. Then all but the bottom right-hand i× j rectangle, where
i and j are the remainders when m and n are divided by 3, can be tiled in an obvious way by 3×1 and
1×3 rectangles, which are in the same Reiss class as their complements. But each of the possible i× j
rectangles (that is, 1×1, 1×2, 2×1 and 2×2) has Reiss diagonals of differing parity (for example, the
2×2 has α and γ diagonals of length 1, but a β diagonal of length 2), so that when the position is com-
plemented some of the counts will change parity and others won’t, and the Reiss class will change.
Hence the result.

On the continental board, the standard start position is in the same Reiss class as the empty board
(either by direct counting, or by systematic removal of 3-packs until the board is empty enough to make
such counting very easy), and so in a different Reiss class from any single peg. For a two-peg solution,
both pegs must lie on the same class of diagonal (to make all counts even), so if one is on d6, the other
must be on a3, d3 or g3. One solution is as follows: Start with 3-packs on b–d3 and b–d2. Next an
L-pack on c–e1–4, a 3-pack on f2–4, another L-pack on g3–5–d, another 3-pack on d–f6, and a final
L-pack on e–c7–4. This leaves 6 pegs in a3–5 and b4–6. Finish with a5–c5, a4–c4–c6 and b6–d6,
leaving pegs in a3 and d6. [The key to this packaging is the way the 3-packs and L-packs can rotate
neatly to fill in the wings; once that has been spotted, it’s easy to get rid of most of the pegs, leaving a
compact and relatively easy configuration to reduce. Of course, your first attempt is very likely to be in
the wrong orientation, but that’s life!]

60 By symmetry, we only need to consider three cases, for example a1, a2 and a3. There are many solu-
tions; here are mine.

Firstly, consider the a1 problem [hole in the corner]. We can clear b1−3 with a 3-pack, and this
gives us the space and catalysts to clear out four 6-packs; successively, cd4−6, ef4−6, ef1−3 and
ab4−6. If we now jump d1−3 over c1−3 into b1−3, we have another 3-pack in b1−3 and a final move
of a3−a1.

This same solution works equally well with the a3 problem; the only change is that the final move
is a1−a3.

For the a2 problem. start with the hint: play a4−a2 and c3−a3. Now we can clear out a −c12
and d − f12 with 6-packs. There are no more obviously-useful 6-packs, but we can do the same thing by
‘eating away’ with 3-packs in d − f3 and d − f4. Now we again have 6-packs available, so can clear out
a −c56 and d − f56, and finish off with c4−a4−a2.

61 In the complementary position, first construct an L-configuration by c4−c6, c2−c4, b3−b5, a5−c5.
This needs a catalyst, so play f3− f5−d5. Clear the L-pack, and rescue the isolated g -peg by
d6−d4− f4, e2−e4−g4 and clear to a single peg by g5−g3. [Note that the rescue is impossible if e234
is cleared by a 3-pack; and if f3− f5 followed by a 3-pack on efg5 is played, there is no way of getting
a catalyst to d5.]

To solve the original position, start with a full board apart from a vacancy in g3, and play the
above moves in reverse order: g5−g3, e4−g4, e2−e4, . . . , c4−c6.

If, initially, a peg is added in d6, the resulting position is in the same Reiss class as the empty [or
full] board—seen by direct computation or by inspection from the single-peg position above. So it is in
a different Reiss class from any single-vacancy position. Finding a two-vacancy start is left as an
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exercise!

62 Start by finding the Reiss class of ‘Arrow’. Lots of ways, including brute force; e.g. move [‘rule of 3’]
e2 to e5 and e6 to e3, giving a 6-pack in the e - and f columns that can be removed; then move the g4
peg to d4 to cancel the peg there; then play a5 to c5 to c3 [jumping over and removing b5 and c4], and
remove the 3-pack on the 3rd row, leaving a single peg in b4. So a single vacancy in the same class
must [as the English board is self-complementary] also be in b4 or else in another place in the same
class, hence [‘rule of 3’ again] in e4 or e1 or e7.

Now we look at the suggested resource count. ‘Arrow’ has resource [sum of values of occupied
holes] −1 − 1 + 1 + 1 + 1 + 1 + 2 + 1 + 1 + 0 + 1 + 1 + 1 + 1 = 10, while the full board also has resource [sum
of all values] 10. So, with the single vacancy at b4 or e4, the initial resource is 10 − 1 = 9, so is
insufficient. With the vacancy at e7, the initial resource is 10 − (−1) = 11, so there is an initial slack of
1. But a first move of e5 − e7 costs 2, which is too much, and the only other move is c7 − e7 which is
free, but then the second move must be c5 − c7 or d5 − d7 which both cost 2. Similarly [by symmetry],
an initial vacancy at e1 is no better. So in all cases, after no more than 2 moves the current resource is
no more than 9, from which it is impossible to reach a position such as ‘Arrow’ which has resource 10.

63 (a ) Bookwork—the ‘Desert Patrol’ or ‘Chinese Army’.

(b ) Work backwards. To get to 0,4, we need pegs in 0,3 and 0,2. Defer 0,2, and consider 0,3. We’ll
try to do this with pegs ‘to the right’ of the diagram, so that we can use the space ‘to the left’ for
the deferred problem. To get to 0,3, we need pegs in 0,2 and 0,1. To get to 0,2, simplest is to
have pegs in 0,0, 0,−1, 1,0 and 2,0; then you can jump ‘up’ and ‘round the corner’ in the most
obvious way. We now have to get a peg to 0,1 starting without the four pegs already initially
placed. If we place pegs in a block of four at 1,−1, 2,−1, 1,−2 and 2,−1, then we can jump these
up and across to get a peg to 0,0; then add pegs at 0,−2 and 0,−3, and this last peg can double-
jump up to 0,1 and thence to 0,3. [We could do this slightly more easily except that we’re trying
to leave lots of space to the left for our ‘deferred’ problem.]

Now we have to get a second peg to 0,2 without using pegs initially ‘to the right’. So we need to
get pegs to 0,0 and 0,1. We can get to 0,1 by having a block of four at −1,0, −2,0, −1,−1 and
−2,−2, and jumping them up and across [or across and up]. Now to get to 0,0. Simplest is to
observe that we can use the shape we used to get to 0,3, but turned through 90 degrees so as to get
to 0,0 using only pegs from three columns or more to the left and no higher than the ‘x -axis’; if
you do this, and then see how it works, you’ll find you can save a peg or two, but you weren’t
asked for the solution with fewest pegs.

There are other ways of doing it, but the ‘Desert Patrol’ shows that it won’t be trivial. It may help
if you draw a diagram or three.

(c ) Resource counts! Simplest, since you have already used it in part (a), is to use the array of σ s;
but a Fibonacci-style count can be used instead. With 7 pegs, the most you can get is
σ 0 + 3σ 1 + 3σ 2 = 1 + 3× (σ + σ 2) = 1 + 3×1 = 4, whereas the target hole has resource σ −3 ≈ 4.23,
so you have insufficient resource. If you don’t quite trust your calculator, then σ −3 = σ −2 + σ −1 =
2σ −1 + σ 0 = 3 + 2σ = 4 + (2σ − 1) = 4 + (σ − σ 2) = 4 + σ 3 > 4, making ruthless use of the defining
equation σ + σ 2 = 1.

64 Left, the attacker, can split the forces 4–0, 3–1 or 2–2; Right, the defender, can split 3–0 or 2–1. In
each case, the choice of which road to attack or defend more strongly should clearly be taken at random
with probability 1⁄2. The payoff matrix is easily found to be (taking strategies in the order given above):

(
1

1

1⁄2

1⁄2

1⁄2

3⁄4 )
Turn Over
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The row minima are all 1⁄2, so the lower value is 1⁄2. The column maxima are 1 and 3⁄4, with minimum
3⁄4, so the upper value is 3⁄4. Since these differ, a mixed strategy is in order. Plainly, Left’s strategies 2
and 3 are equivalent, so we can take them together. Assume Left plays strategy 1 with probability x ,
and Right plays strategy 1 with probability y . Then the expected payoff is

1⁄2xy + 3⁄4x(1−y) + 1(1−x)y + 1⁄2(1−x)(1−y) = 1⁄4(2 + x + 2y − 3xy)

with critical value 2⁄3 when x = 2⁄3 or y = 1⁄3 (obtained by equating the partial derivatives to zero). [So,
Left should usually attack in strength, and Right should usually split the forces. In reality, Left should
presumably always send at least a small force along the ‘other’ road, if only as a diversion. and Right
should probably keep one division in reserve.]

65 Holes B and C are indistinguishable, so may be taken together, with the dog or rabbit choosing between
them by tossing a mental coin when appropriate. So the dog (Left) has four available strategies: wait
near A, wait near B or C, wait between B and C and wait overlooking all three. The rabbit (Right) has
two strategies: exit through A and exit through B or C. The corresponding payoff (probability of catch-
ing the rabbit) matrix is:

(
q

0

0

1

q

p

1⁄2

0 )
The lower value is plainly q , and the upper value is the greatest of p , q and 1⁄2, so a mixed strategy is
needed unless q is particularly large. Comparing the dog’s second and third strategies, we see that stra-
tegy three is dominated if p < 1⁄2; this is intuitively obvious—if p is small, then he does better to
choose a hole and stick to it, and if it is large he does better to hedge his bets. The fourth strategy,
guarding all three holes, is inferior to choosing a hole at random if q < 1⁄3; again, this is intuitively
obvious, but can be rationalised by comparing row four with choosing row one with probability 1⁄3 and
row two with probability 2⁄3.

In the case p = 4
3

� � , q = 5
2

� � , suppose the rabbit chooses hole A with probability y . Then the dog’s
strategy two is dominated, and the other three strategies pay y , p(1−y) and q .

y
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

p

q

1

1

From the graph, and remembering that the rabbit is trying to minimise the maximum payoff, we see that
strategy four is dominated, and the value of the game is 7

3
� � when y = 7

3
� � . To achieve this payoff, the dog

should wait by hole A with probability 7
3

� � and between holes B and C with probability 7
4

� � ; the rabbit
should choose hole A with probability 7

3
� � , and holes B and C with probability 7

2
� � each.

66 Note that you either win your opponent’s stake or lose your own; construction of the payoff matrix and
of lower and upper values left as an exercise. If Left stakes £1 with probability x and Right stakes £1
with probability y , then the expected payoff is

xy − x(1−y) − 2(1−x)y + 2(1−x)(1−y) = 2 − 3x − 4y + 6xy = (2 − 3x)(1 − 2y).

From this factorisation, we see that either Left or Right can force the payoff to be zero (hence a fair
game) by choosing x = 3

2
� � or y = 2

1
� � respectively. (The same result follows by the more usual techniques.)
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Since the amount you lose is your own stake, the amount you win is your opponent’s stake, and the
outcome depends only on the parities of the stakes, there is no point staking a higher number of pounds
if there is available a lower number of pounds with the same parity. So only the lowest possible stake
of each parity is relevant. In case (a), only stakes 1 and 2 should be considered, and we recover the
previous game. In case (b), only stakes 2 and 9 are relevant; the analysis is left as an exercise (very
similar to the above). In case (c), Right can only bet an even number (hence £2), and Left wins £2 by
betting any even number.

67 Labelling strategies by the number of fingers shown, the payoff matrix is:

RIGHT

1 2 3 minima� ���������������������������������������������������������������������
1 −2 3 −4 −4

LEFT 2 3 −4 5 −4
3 −4 5 −6 −6� ���������������������������������������������������������������������

maxima 3 5 5
��
�
�
�
�
�
�

��
�
�
�
�
�
�

The lower and upper values, −4 and 3, differ so a mixed strategy is in order. There are no obvious
dominations, so we try letting Left play strategies 1, 2, 3 with respective probabilities x , y and 1−x −y ,
and Right similarly s , t and 1− s − t . This leaves you with some tedious but simple algebra and calculus
[left as an exercise]. You will find that ∂V /∂s = 0 yields y = 2

1� � and then that ∂V /∂t = 0 yields x = 4
1� � ,

and similarly t = 2
1� � and s = 4

1� � , and that for these values, the game has value zero [so is ‘fair’].

Now we’ve seen the answer, the reason becomes obvious. Note that the payoff [for each player]
of strategy 2 is the negative of the average of strategies 1 and 3. So if either player plays strategy 2
with probability 2

1� � , amd the other two strategies each with probability 4
1� � , then the expected payoff

against any opposing strategy is zero. Since either player can enforce this, neither player can do better
than this.

68 If α 1 then for each player strategy 2 dominates strategy 1, so each player should play strategy 2 and
the value of the game is 1. If α < 1, then the lower value of the game is α , the upper value is 1, and a
mixed strategy is called for. If Left plays 1 with probability x , Right with probability y , then the
expected payoff is

1xy + 0x(1−y) + α(1−x)y + 1(1−x)(1−y) = 1 − x − (1 − α)y + (2 − α)xy

so the critical values are x = (1 − α) / (2 − α), y = 1/(2 − α), and the value of the game is 1/(2 − α).

If we take Left to be the attacker, with strategy 1 being ‘sitting duck’ and 2 being ‘out of the sun’,
Right to be the defender playing ‘stare at the sun’ or ‘look away’, then we recover the previous matrix
with α = 20

19� ��� . So, the value of the game is 21
20� ��� , Left should play sitting duck with probability 21

1� ��� and Right
should stare at the sun with probability 21

20� ��� .

If Left refuses to play sitting duck, then Left strategy 1 disappears, Right strategy 2 is dominated,
Right should always stare at the sun and the value of the game is α = 20

19� ��� . The difference is
(1 − α)2 / (2 − α) = 420

1� ����� ; realistically, it will be very hard to persuade pilots to play sitting duck for such a
small advantage.

69 Clearly, if the opponent has already thrown but missed, then you should wait until the third round, when
the hit is certain. Otherwise, the available strategies are to throw on the first, second or third round.
Assuming a payoff of 1 if Dum wins, −1 if Dee wins, and 0 for a draw, the payoff matrix is

Dee
1 2 3 minima���������������������������������������������������������������������

1 − 3
1� � − 3

1� � − 3
1� � − 3

1� �

Dum 2 3
1� �

2
1� �

2
1� �

3
1� �

�
�
�
�
�

�
�
�
�
�
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3 3
1� � − 2

1� � 1 − 2
1� �

���������������������������������������������������������������������
maxima 3

1� �
2
1� � 1

�
�
�

�
�
�

Since the lower and upper values are both 3
1� � , they should play the corresponding pure strategies:

Dum should pass on the first round, intending to throw on round 2, unless Dee throws and misses;
Dee should throw at the first opportunity, unless Dum throws and misses, and thereby wins with proba-
bility 3

1� � ; and Dum wins with probability 3
2� � .

With phaser stun guns, since you cannot tell whether your opponent has fired and missed or just
not yet fired, the strategies are simply to fire [if you still can] on the first, second or third round. Now,
for example, if Dum plays 2 and Dee plays 1, the probability of Dee winning is 3

1� � , of Dum winning is
therefore 3

2� � × 4
3� � , and so the payoff is 3

2� � × 4
3� � − 3

1� � = 6
1� � . The payoff matrix is, continuing similarly:

Dee
1 2 3 minima�����������������������������������������������������������������

1 9
1� � − 6

1� � − 3
1� � − 3

1� �

Dum 2 6
1� �

16
9� ���

2
1� �

6
1� �

3 3
1� � − 2

1� � 1 − 2
1� �

�����������������������������������������������������������������
maxima 3

1� �
16
9� ��� 1

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

so the lower value is 6
1� � and the upper value 3

1� � ; as these differ, a mixed strategy is indicated. Dum1 is
clearly dominated, and then Dee3 is also dominated (either by inspection or by graphical solution). If
Dum plays Dum2 with probability x , and Dee plays Dee1 with probability y , then the payoff is easily
found to be

( 3
1� � − 6

1� � x)y + ( 16
17� ��� x − 2

1� � )(1 − y) = − 2
1� � + 16

17� ��� x + 6
5� � y − 48

59� ��� xy.

The stationary value is 59
13� ��� , when x = 59

40� ��� and y = 59
51� ��� .

Dum should pass on round 1, should fire on round 2 with probability, 59
40� ��� , and on round 3 with pro-

bability 59
19� �	� ; Dee should fire on round 1 with probability 59

51� ��� and on round 2 with probability 59
8� ��� ; Dum

wins with probability 3481
1944� ������� , roughly 0.56, Dee with probability 3481

1177� ������� , roughly 0.34, and there is a proba-
bility 3481

360� �	����� , roughly 0.10, that both miss.

70 Left has four pure strategies: LL, LH, HL and HH, where, for example, LH means ‘bet low on a picture,
high on a non-picture’. Similarly, Right has the four strategies CC, CD, DC and DD, where CD means
‘concede a low bet, double a high’. So the payoff matrix is (with Left winnings positive):

CC CD DC DD�
���������������������������������������������������������������������������������
LL 1 1 2p − 2q 2p − 2q
LH p + 5q p − 10q 2p + 5q 2p − 10q
HL 5p + q 10p − q 5p − 2q 10p −2q
HH 5 10p −10q 5 10p −10q

��
�
�
�
�
�

where p = probability of picture = 13
3� �	� , q = 1 − p = 13

10� ��� . By inspection, LL and LH are dominated by HL
and HH respectively [‘always bet high on a picture’], and in the reduced matrix CC and CD are dom-
inated by DC and DD [‘never concede a low bet’], so this is equivalent to the 2×2 payoff matrix in the
bottom right-hand corner. As the lower value, 5p − 2q = − 13

5� ��� , differs from the upper value, 10p − 2q =
13
10� ��� , both players should play mixed strategies. Suppose Left plays HL with probability x , Right plays
DC with probability y , then the payoff is

V = 13
1� �	� (−150xy + 80x + 135y − 70),

so that V is stationary when y = 15
8� ��� and x = 10

9� ��� , and for these values of x and y , V = 13
2� ��� .

So Left should bet £5 on any picture, £1 on any other card with probability 10
9� ��� (and £5 with proba-

bility 10
1� �	� ). Right should double any £1 bet, and concede a £5 bet with probability 15

8� �	� or double it with
probability 13

7� ��� . Left expects to win £ 13
2� ��� .
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71 Len has three pure strategies: (a) play the real fly first; (b) play the imitation first, then (if necessary)
the real fly; (c) play the imitation both times. So does Rick: (a) swat on the first go; (b) pass, then (if
necessary) swat; (c) pass both times. So the payoff matrix is (with Len’s winnings positive and scaled
to 1):

L\R a b c�������������������������������������
a –1 0 0
b 1 –1 0
c 1 1 –1

�
�
�
�
�

(or some linear scaling from this, depending on what you think L or R is winning).

As the row minima are all –1, while the column maxima are 1, 1 and 0 (minimum of 0), no pure
strategy is optimal. Also, by inspection, no strategy is ‘obviously’ dominated. Assume therefore that L
plays (a, b, c) with probabilities x , y , 1 − x − y respectively, while R plays them with probabilities s , t ,
1 − s − t . Then the payoff is

V = −sx + sy − ty + s(1−x −y) + t(1−x −y) − (1−s − t)(1−x −y).

For stationary values, ∂V /∂x = 0, etc., so we get the four simultaneous equations:

−s −s − t + 1−s − t = 0,
s − t − s − t + 1− s − t = 0,
−x + y + 1−x −y + 1−x −y = 0, and
−y + 1−x −y + 1−x −y = 0;

whence (E&OE) x = 7
4� � , y = 7

2� � , s = 7
1� � and t = 7

2� � [details omitted, but not difficult!], and so V = − 7
1� � . Etc.

72 Each player has two pure strategies, to go either to the Bower or to the Valley. If they choose the
‘same’ strategy, then the expected payoff for Galahad is half the number of sisters at the destination, if
‘opposite’, then he rescues all the sisters. Setting up the matrix and showing that a mixed strategy
should be played is now absolutely routine; if G goes to the Bower with probability x , and M with pro-
bability y , then the expected payoff is

V = 4xy /2 + 4x(1−y) + 3(1−x)y + 3(1−x)(1−y) /2,

and [details omitted] this is stationary when x = 7
3� � , y = 7

5� � , V = 2 7
4� � . as required.

If (a) neither G nor M has heard about the escape, then their strategies will be unchanged, but the
expected payoff is now

V = 3xy /2 + 3x(1−y) + 3(1−x)y + 3(1−x)(1−y) /2,

so with the same x and y , the payoff is reduced to V = 2 98
29� ��� . If (b) G knows but M doesn’t, then M

should follow the original strategy, so we can substitute y = 7
5� � in the new formula for V to obtain

V = 14
9� ��� (4−x). This is maximised by taking x = 0, so G should always go to the Valley, and his expected

payoff is 14
36� ��� = 2 7

4� � , as before. [This is not a coincidence!] If (c) M knows but G doesn’t, then G should
follow the original strategy, so we can substitute x = 7

3� � in the new formula for V to obtain V =
14
3� ��� (10 + y). This is minimised by taking y = 0, so M should always go to the Valley, and the expected

payoff is 14
30� ��� = 2 7

1� � . If (d) both knights know, then we have a new game. However, this is obviously
symmetric between B and V, so each knight should toss a coin to determine his destination, and the
expected payoff for G is 2

1� � (3 + 2
3� � ) = 2 4

1� � , intermediate [as you should expect!] between the previous two
values.

73 I have four pure strategies: be ‘creative’ on neither company [N], on chess alone [C], on bridge alone
[B] or on both companies [CB]. The authorities can investigate the chess company [C], or the bridge
company [B], but not both [by assumption]. As a matrix game, this gives rise to the game [with payoffs
in tens of thousands of pounds, to simplify the use of percentages]:

C B� �����������������������������������������������
N −400 −400

�
�
�

Turn Over
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C −400−3p −100
B −300 −400−p

CB −300−3p −100−p
�
�
�
�

[It would actually be quite sensible to work this problem from the point of view of the authorities, then
all the payoffs are positive, and one potent source of errors is eliminated!] Assuming p > 0, the row
minima are −400, −400−3p , −400−p and −300−3p , so the lower value of the game is −400 if
p > 33 3

1� � , and −300−3p otherwise [it pays to cheat if the maximum penalty is less than the minimus tax
saved]. [If p 0, then my strategy CB dominates all the others—you should definitely cheat if the
authorities pay you to do so!] The column maxima are [again, assuming p > 0] −300 and −100, so the
upper value is −300. As the upper value is greater than the lower value [for p > 0], a mixed strategy
will be in order.

As there are only two strategies for the authorities, but four for me, none of which is obviously
dominated, a graphical solution is easiest—a rough sketch will suffice. Suppose the authorities ‘play’ C
with probability x ; then the payoffs are roughly as shown [the diagram shows p = 50].

x

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

N

C

B

CB

(a) In the case p = 50, we see from the diagram that the lowest point on the highest strategy occurs
where B and CB cross, and at this point N and C are dominated. This occurs when −150 − 300x =
−450 + 150x , or x = 3

2� � , and the payoff is −350. [Check: at this value of x , both N and C pay
−400, so are indeed dominated.] Against the strategy of checking the chess company, my strategy
B pays −300 and CB pays −450, so I should play B with probability y such that
−300y − 450(1−y) = −350, or y = 3

2� � . So, I should always ‘cheat’ with the bridge company, and
should also ‘cheat’ with the chess company with probability 3

1� � , while the authorities should check
the chess company with probability 3

2� � and otherwise the bridge company; I expect to save
£500 000 this way.

(b) As p increases, the three ‘cheating’ strategies move down the diagram until the point of intersec-
tion just obtained crosses the ‘honest’ strategy. The honest strategy is worthwhile compared with
strategy C when −100 − (300+3p)x −400, or x 100/ (100+p); with strategy B when
−400 − p + (100+p)x −400, or x p / (100+p); and with strategy CB when
−100 − p − (200+2p)x −400, or x 2

1� � (300−p) / (100+p). [These can be read off from the
diagram (generalised to arbitrary values of p ).] The value of x can satisfy all three inequalities if
p max (100, 2

1� � (300−p), so if p 100. So honesty is worthwhile if cheating costs [at least] dou-
ble tax. Note that in the case p = 100, the optimal value of x is 2

1� � , so the authorities should toss a
coin to decide which company to investigate, and against this strategy all four of my strategies
result in a tax bill of £4 000 000.

74 Len has four possible pure strategies: (L1) always tell the truth; (L2) always lie; (L3) tell the truth on
‘Heads’, lie on ‘Tails’, i.e. always say ‘Heads’; and (L4) always say ‘Tails’. Similarly, Rick has four
pure strategies: (R1) always believe; (R2) always call; (R3) believe ‘Heads’ but call ‘Tails’; and (R4)
believe ‘Tails’ but call ‘Heads’. This gives rise to the following matrix:

R1 R2 R3 R4
��
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�������������������������������������������������
L1 2

1� � 2 1 2
1� � 1

L2 2
1� � −2 − 2

1� � −1
L3 1 0 1 0
L4 0 0 0 0

�
�
�
�
�

For example, in L1 vs. R1, Len wins £1 on ‘Heads’ and nothing on ‘Tails’, so his expected winnings are
50p; in L3 vs. R4, Len always says ‘Heads’ so is always called, and Len is equally likely to be telling
the truth or lying, so his expected score is 0. The row minima are 2

1� � , −2, 0 and 0 so the lower value is 2
1� � ;

the column maxima are 1, 2, 1 2
1� � and 1 so the upper value is 1; so a mixed strategy will be indicated.

We note that L2 and L4 are dominated by L1, so Len should choose between L1 and L3, and
always tell the truth on ‘Heads’. With L2 and L4 deleted, R4 dominates R2 and R3, so Rick should
choose between R1 and R4, and always believe ‘Tails’.

Suppose Len plays L1 with probability x and so L3 with probability 1−x , while Rick plays R1
with probability y and so R4 with probability 1−y . Then the expected payoff is

V = 2
1� � xy + (1−x)y + x(1−y) + 0 = x + y − 1 2

1� � xy,

so ∂V /∂x = 1 − 1 2
1� � y = 0 when y = 3

2� � , and ∂V /∂y = 1 − 1 2
1� � x = 0 when x = 3

2� � . So Len should always tell
the truth on ‘Heads’ and bluff one-third of the time on ‘Tails’; Rick should always believe ‘Tails’ and
call one-third of the time on ‘Heads’; and the expected outcome is a payoff to Len of £ 3

2� � .

75 First bit is bookwork. If x = 1, then the expected payoff is 2
1� � y(W − I ), and if I < W then this is maxim-

ised by y = 1; in other words, pure Hawks do better in a population of Hawks than do deer with any
mixed strategy. If on the other hand I > W, then the payoff decreases with y , and mixed strategists do
better than pure Hawks in a population of Hawks; that is, pure Hawk is not E.S.S. A population of pure
Doves would be characterised by x = 0, with expected payoff therefore 2

1� � W(1 + y). The payoff increases
with y , so that mixed strategists do better than pure Doves (y = 0), and pure Dove is not E.S.S. either.

Bullies are indistinguishable from Doves except when a Bully fights a Dove, in which case the
Bully always wins. So, if an E.S.S. is to play Hawk with probability p , Dove with probability q and
Bully with probability r , where p + q + r = 1, then a male playing Bully whenever he ‘should’ play Dove
will now expect to score W instead of 2

1� � W whenever he encounters a Dove, and 2
1� � W instead of 0 when-

ever he encounters a Bully; the expected gain of 2
1� � Wq(q + r) is strictly positive if q > 0. So, for an

E.S.S., q must be zero, and there can be no Doves.

In such an E.S.S., Bullies are indistinguishable from Doves, so the expected payoff, from the for-
mula given in the question, when a deer plays Hawk with probability y is

2
1� � W(1 − p + y −

W

I��� py).

This is better than the E.S.S. strategy if

2
1� � W(1 − p + y −

W

I��� py) > 2
1� � W(1 − p + p −

W

I��� p2),

which simplifies (left as an exercise) to

(W − Ip)(y − p) > 0.

Since p can be neither zero nor one, from the first part of the question, either y = 1 or y = 0 will cause
this inequality to be satisfied unless W = Ip , as required.

The payoff matrix with Retaliators is left as an exercise. If I > W then [it is easily seen from the
matrix that] Doves dominate Retaliators, so there can be no Retaliators in an E.S.S. If I < W, then
Retaliators dominate Doves; and in the absence of Doves they also dominate Hawks. So, no E.S.S. can
contain Doves, and therefore one cannot contain Hawks either. However, Retaliator is not an E.S.S.,
because in the absence of Hawks, Doves are just as fit. [So there is no E.S.S.]
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76 This is actually a minor tweak on the ‘bookwork’ display behaviour covered in lectures. There, the cost
of displaying for time t was αt ; proceed the same way, replacing αt by w(t), and replacing the value of
winning by V, to get the expected payoff of

∫0

p
(V − w(q)) f (q) dq + ∫p

∞ − w(p) f (q) dq

As in lectures, for ESS, this must be independent of p ; differentiating wrt p gives

(V − w(p)) f (p) + w(p) f (p) − ∫p

∞
w ′ (p) f (q) dq = 0,

or

V f (p) = w ′ (p)∫p

∞
f (q) dq.

as required. In the case w(p) = p2, this is

V f (p) = 2p∫p

∞
f (q) dq.

Differentiate again wrt p ; then

V f ′ (p) = −2pf (p) + 2∫p

∞
f (q) dq = −2pf (p) + V f (p) /p,

whence V f ′ / f = −2p + V /p , which integrates directly to give f (p) = Ape−p2 /V for a suitable constant A,
determined by the fact that ∫0

∞
f (q) dq = 1. Thus, 2

1
� � AV = 1, and f (p) = 2pV −1e−p 2 /V. [More generally,

f = w ′V −1e−w /V.]

77 Effectively, this is a simple application of the Principle of Indifference. At each moment, you must
decide whether to throw or wait. If you throw too soon, you are likely to miss, and then you get killed.
If you wait too long, your opponent is likely to throw and kill you. You throw when it doesn’t matter;
this is when the chance of me [say, Cain] missing, 1 − c(x), is the same as the chance of you hitting, a(x),
or when c(x) + a(x) = 1, as required. This strategy is optimal for both of you; if you throw earlier, then
your chance of winning is less [because c(x) is monotonic]; and if you throw later, then your oppponent
can limit your winning chance to that by following the ‘correct’ strategy, but can also do better by wait-
ing until just before you throw, in which case you have an increased chance of losing.

If Abel is optimistic, then Cain does not need to change strategy. The effect is that Abel can be
expected to throw too soon, that is when c(x) + a ′(x) = 1, and Cain’s winning chance is therefore
1 − a(x) > 1 − a ′(x) as a ′(x) > a(x). If Abel is pessimistic, then Abel can be expected to throw too late.
Cain can retain the same winning chance as above by throwing at the correct time, but if Abel is known
to be playing by the above strategy, then Cain can afford to wait until Abel is about to throw, so getting
a winning chance of nearly 1 − a ′(x) > 1 − a(x).

End


