1	The value of the determinant $\begin{vmatrix} 1 & -1 & 2 \\ -1 & 3 & -1 \\ 2 & -1 & -1 \end{vmatrix}$			
	2 -1 1 is			
	(a) -11,	(b) -9,	(c) -7,	(d) 13.
2	The vector $i - 2j + 3k$ has length			
	(a) 6,	(b) $\sqrt{6}$,	(c) 14,	(d) $\sqrt{14}$.
3	The component of the vector $(-1, 1, 2)$ in the direction of the vector $(2, 2, -1)$ is			
	(a) -2,	(b) -2/3,	(c) -6,	(d) 6.
4	If the vectors a and b are perpendicular, then it follows that			
	(a) $a \cdot b = 0$, (d) the parallelogram	(b) $a \times b = 0$, (c) either $a = 0$ or $b = 0$, n based on a and b is a rhombus.		
5	If $u = (1, 1, 2)$ and $v = (2, 5, 1)$, then $u \times v$ is			
	(a) (-9, -3, 3),	(b) (9, -3, -3),	(c) 9,	(d) (-9,3,3).
6	If $a = i$, $b = i + j$ and $c = i + j + k$, then the scalar triple product $[a, b, c]$ is			
	(a) -3,	(b) -1,	(c) 1,	(d) 3.
7	The plane through the point p and perpendicular to the vector n has equation			
	(a) $(r-n) \cdot p = 0$,	(b) $(r-p) \cdot n = 0$,	(c) $(r-n) \times p = 0$,	(d) $(r-p) \times n = 0$.
8	If A is a 2×3 matrix, and B is a 2×4 matrix, then the following matrix products exist:			

(a) AB, (b) BA, (c) A^TB , (d) none of these.

9 If the matrix *A* is defined by

$$A = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

then it is not true that

- (a) A is symmetric, (b) A has no inverse, (c) $A A^T$ is a zero matrix,
 - (d) A is orthogonal.
- **10** If the matrices *R*, *S* and *T* are defined by

$$R = \begin{pmatrix} 1 & 4 & 2 \\ -1 & 0 & 3 \\ 5 & 2 & 1 \end{pmatrix}, S = \begin{pmatrix} 5 & 7 & 1 \\ 0 & 3 & 2 \\ -6 & 2 & 4 \end{pmatrix}, T = (t_{ij}) = RS,$$

then the element t_{32} is

(a) 11, (b) 4, (c) 43, (d)
$$-16$$
.

11 The inverse of the matrix
$$\begin{pmatrix} 1 & 2 \\ 3 & 3 \end{pmatrix}$$
 is
(a) $\begin{pmatrix} -1 & \frac{2}{3} \\ 1 & -\frac{1}{3} \end{pmatrix}$ (b) $\begin{pmatrix} 3 & -2 \\ -3 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & 1 \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$ (d) $\begin{pmatrix} 3 & -3 \\ -2 & 1 \end{pmatrix}$.

12 The eigenvalues of the matrix
$$\begin{pmatrix} 2 & 2 \\ 6 & 3 \end{pmatrix}$$
 are

(a) -6 and 1, (b) 6 and -1, (c) 2 and 3, (d) -6 and 6.

Section B

- **13** A cable is connected to a pylon at the point A = (0, 0, 5) and runs in a straight line in the direction of the vector (5,4,1). Another cable starts at the point B = (0,3,0) and runs in a straight line to be attached to a vertical pole at (4, -1, h), for some h.
 - (a) Find the equation of each cable in parametric form, [4] and show that the cables intersect if h = 12.8. [4]
 - (b) In fact *h* is taken to be 8. Find a vector \mathbf{v} which is normal to both cables for this value of *h*, [5] and find the component of \overrightarrow{AB} in the direction of \mathbf{v} . [4]
 - (c) For safety reasons, it is required that the second cable is at least a distance 1 from the first cable at the nearest approach. Find whether or not the chosen value of h is safe. [3]
- 14 (a) A particle of constant mass m moves so that its position vector r(t) at time t is

$$\mathbf{r}(t) = \cos(t)\,\mathbf{i} + \sin(t)\,\mathbf{j} + 2t\,\mathbf{k}.$$

Find the velocity $\boldsymbol{v}(t)$ of the particle,[3]and show that it moves with constant speed $\sqrt{5}$.[2]Find also the acceleration $\boldsymbol{a}(t)$ of the particle,[2]and show that the force acting on the particle has magnitude m[1]and acts through the point (0, 0, 2t).[2]

(b) The temperature at the point (x, y, z) is given by

$$T(x, y, z) = x^2 y \sin z$$

over some region of space. Find the temperature gradient $u = \nabla T$. [4] Find also the Laplacian, $\nabla \cdot u = \nabla^2 T$, [3] and verify that $\nabla \times u = \nabla \times \nabla T = 0$. [3]

- **15** (a) For what value of the parameter *t* do the homogeneous equations
 - 2x + y + tz = 0, x + 4y + z = 0 and3x - y - 10z = 0

have non-trivial solutions? Find a non-trivial solution for this value of t.

- (b) Write the system of equations
- x-4y-2z = 21, 2x+y+2z = 3 and 3x+2y-z = -2

in matrix form.

Construct the augmented matrix for this system, and use the row reduction method [*and no other*] to obtain the solution.

16 Find the three eigenvalues of the matrix

$$A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Show that $(1,3,1)^T$ is an eigenvector of *A* corresponding to an eigenvalue 2, [4] and find eigenvectors corresponding to the other two eigenvalues of *A*. [8]

[4] [3]

[2] [2] [9]

[8]