
Inverse matrices

If there is a matrix N = M −1 such that MN = NM = I, then there
are lots of nice algebraic things we can do. Just as we can’t divide two
vectors, similarly we can’t divide two matrices. But we can do the
next best thing: instead of dividing by M, we can multiply by M −1.
Most square matrices M do have inverses, and we can [but are not
going to!] write them down formally in terms of lots of
determinants—the determinant, written det M, which has the same
elements in the same positions as M, and the minors of that deter-
minant [that is, the determinants obtained by striking out a particu-
lar row and column].

Square matrices that do not have an inverse are called singular.
And so matrices that do have an inverse are non-singular. The formal
inverse [which we’re not going to look at in this module] shows that a
matrix is singular if, and only if, its determinant is zero.

Why am I not going to show you the formal inverse? It’s because
it’s of almost no practical use. To invert a 100×100 matrix, we need to
work out a 100×100 determinant and its 104 99×99 minors. Finding
these is quite impracticable—except by finding the inverse efficiently
and reading off the minors from it!

There is one exception. For a 2×2 matrix, we need a determinant
of order 2 and its 4 minors. So, . . . .

lecture 14



- 2 -

Inverse of a 2×××2 matrix

Given a 2×2 matrix M = ( c
a

d
b ), its determinant is det M =

ad − bc . Provided that det M ≠ 0, we can write down

M −1 =
ad −bc

1
����������� ( −c

d
a

−b ).

You should check that with M −1 as just given, MM −1 = M −1M = I.

� Note that a and d have swapped places, b and c have stayed
where they are but changed sign. They have changed sign
because of the ‘chequer-board’ pattern of determinants; they
have stayed where they are because the pattern of minors is
transposed [so they have swapped twice].

Examples

� Find the inverses, where possible, of

A = ( 1
3

1
2 ); B = ( 2

1
4
2 ); C = ( −3

6
2

−5 ); D = ( 0
1

1
0 ); and E = ( −1

− 3
2� �

−2
− 3

5� � ).

We note that det A = 3×1 − 2×1 = 1, det B = 1×4 − 2×2 = 0,
det C = 6×2 − (−3)× (−5) = −3, det D = 1 and det E =
− 3

2� � × (−2) − (− 3
5� � )× (−1) = − 3

1� � . So B is singular and has no inverse;
but

A−1 =
1
1
� � ( −1

1
3

−2 ) = ( −1
1

3
−2 ); C −1 =

−3
1
����� ( 3

2
6
5 ) = ( −1

− 3
2� �

−2
− 3

5� � ).

Finally, D = I, so D −1 = I, and C −1 = E, so E −1 = C. Check all
these!
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Special forms and properties of inverses

� We have already seen particular cases of (a) I −1 = I; and (b) if
M −1 = N, then N −1 = M. Also (c) if M −1 = N, then (MT)−1 =
(M −1)T [the inverse of the transpose is the transpose of the
inverse]; and (d) if A and B are conformable for multiplication
and are non-singular, then (AB)−1 = B −1A−1 [the inverse of a
product is the swapped-around product of the inverses]. [Check
for the last result: (B −1A−1)AB = B −1(A−1A)B = B −1IB =
B −1B = I. Note that we have to keep products of matrices in the
right order when we do algebra with them!]

Examples: using the matrices above,

AT = ( 2
3

1
1 ) so (AT)−1 = ( −2

1
3

−1 ),

using the previous result. Also,

AC = ( 3
12

−3
−11 ) so (AC)−1 = C −1A−1 = − 3

1� � ( 3
2

6
5 )( −1

1
3

−2 ) = − 3
1� � ( −3

−3
12
11 ).

For 2×2 matrices, these results are not much, if any, easier than
writing down the inverse directly, but they work just as well for
larger matrices.

� If a matrix is symmetric, or anti-symmetric, or upper triangular,
or lower triangular, or diagonal, then so is its inverse [if one
exists].

These results are immediate from ‘the formula’ for 2×2 matrices,
but they apply to any matrix.
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Diagonal matrices

For example, if

D = ( 0
0
2

0
−3

0

4
0
0 ), then D −1 = ( 0

0
2
1

� �

0
− 3

1
� �

0

4
1

� �

0
0 ).

A diagonal matrix has ‘disentangled’ a set of simultaneous equations;
each equation includes only a single variable. So diagonal matrices
are ‘targets’ of many matrix applications.

Orthogonal matrices

A matrix is orthogonal if its transpose is its inverse, MT = M −1,

as for example ( 2
1

� �

2
1

� � √
� �

3

2
1

� � √
� �

3
− 2

1
� � ). Orthogonal matrices represent rotations

and reflexions, so they are very important in computer graphics and
other applications where you want to turn something round without
distortion or change of scale. [If you think of 2

1
� � √

� �

3 = cos 6
1

� � π , 2
1

� � = sin 6
1

� � π
in the example, the connexion with rotations may be more obvious.]

Inverting a larger matrix

If we aren’t going to do this by formula, how can we do it? We
need to step back a little. See the sections on Gauss elimination and
Gauss–Jordan in the booklet.

lecture 14


