Gaussian elimination and Gauss-Jordan
[See the examples in the booklet.]

Note that the example given using variables [w, x, y, 2] is just a
somewhat more complicated case of the simultaneous equations you
solved at school/college, and that we solved formally when we talked
about determinants. Gaussian elimination is just a further formalisa-
tion of that process.

The row operations involved [in the matrix formulation] are very
similar to those we used in evaluating determinants. So if we stick to
operations of the form row; = row;+*cxrow;, and don’t swap rows or
scale them, as in the Gaussian elimination example, we have virtually
found detA as a by-product of the reduction of A to the upper-
triangular form B: detA = 2x6x3x2 = 72. This is a Good Way to
find determinants of large matrices, eg by computer program. [If you
do swap/scale rows, then the determinant equally changes sign or is
scaled.]

The Gauss—dJordan process systematically then reduces the
upper-triangular form, such as B, to an identity matrix, I, after which
the solution is trivial. If we initially augment by an identity matrix,
then the row-reduction of A to I similarly reduces I to A™1, so we can
read off the inverse of A. This is a Good Way to find inverses. [Even
of 2x2 matrices.]

For large matrices, this is far from the full story. Doing so many
row operations allows rounding errors to accumulate unless you are
careful. See later modules in Numerical Analysis. At least read up
about pivoting and about conditioning before trying this in Real Life.
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Examples

Solve the equations

xty—-z =4
2x-y+3z = -3
—x—2y+2z = -7

by using row reductions.

In matrix form, this is

1 1-1\/=x 4
2 -1 3yl =1-3
-1 -2 2/\z —7

As a Gauss—dJordan tableau, this looks like:

1 1 -1 4 ... (1)

2 -1 3 -3 ... (2)

-1 -2 2 =7 ... (3)

(2)-2x(1) 0 -3 5 | —-11 ... (4)
(3)+(1) 0 -1 1 -3 ... ()
(4)-3x(5) 0 0 2 -2 ... (6)
(6)+ 2 0 0 1 -1 .. (7)
(5)-(7) 0 -1 0 -2 ... (8)
-(8) 0 1 0 2 ... (9)
(1) —(9)+(7) 1 0 0 1 ... (10)

Equations (7), (9) and (10) [the ‘back substitution’ phase] tell us
thatz = -1,y =2 and x = 1.

Equations (1), (4) and (6) correspond to the upper-triangular

matrix obtained before back-substitution. The above is my
recommended layout.
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° Find the inverse of the matrix

Putting a unit matrix into the tableau, we have:

1 1 -1 1 0 0
2 -1 3 0 1 0
-1 -2 2 0 0 1
0 -3 5] -2 1 0
0 -1 1 1 0 1
0 0 2 ) 1 -3
0 0 1| -5/2 172 -3/2 *
0 -1 0 72 -1/2 5/2
0 1 0 | -7/2 1/2  -5/2 *
1 0 0 2 0 1*

So, from the lines (*), we can read off the lines corresponding to a
unit matrix to the left of the line:

1 1 -1\ 20 1
2 -1 3| =|-%23z -3
-1 -2 2 -3 % -3

Note that the numbers in the left half of the tableau are exactly
the same as in the previous example.
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What can go wrong?

It looks as though the Gauss—dJordan process should always
work; but I said earlier that not every matrix has an inverse. So how
does the process fail? Let us tweak a previous example:

° Solve the equations

xty—-z =4
2x—-y+z = -3
-x—-2y+2z = -7

by using row reductions. [The second equation previously was
2x-y+3z = —-3.]

So the tableau starts off:

1 1 -1 4 ..o (1)
2 -1 1 -3 .. (2)
-1 -2 2 -7 .. (3)
(2)-2x(1) 0 -3 3 | -11 ... (4)
(3)+(1) 0 -1 1 -3 ... (5)
(4)-3%(5) 0 0 0 -2 ... (6)
Oops! Equation (6) now says Ox +0y +0z = -2; the equations are

inconsistent. There is no solution, and no way to complete the
Gauss—dJordan process, either to solve the equations, or to invert the
matrix.

Similarly, if our second equation had been 2x-y+z = -1, then
equation (6) would have been 0x +0y +0z = 0 [check!]. This would not
have been inconsistent; but it is also no use to us. Effectively we have
no equation for z: we can choose z arbitrarily, and then back-
substitute to find y and then x in terms of z. There is a solution for
each possible value of z; but still no way to invert the matrix.
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