Iterative solutions

If a matrix is very big, then finding its exact inverse, or using a
tableau method to solve equations, takes a long time. It is not
unusual for a major construct—a bridge, a car, the UK economy—to
have several thousand components, each of which may have to satisfy
several equations to be ‘in equilibrium’; or, if you are dealing with a
complicated problem in computational fluid dynamics, you may need
to consider the conditions at every point in a 3D grid—e.g. the air flow
round an aircraft may need to be measured every metre or so [more
near the wings/engines] or about 100000 grid points for a jumbo jet.
With so many equations, you really need professional help; and even
with that help, you may need to use a super-computer for several
days. But there are a few cases where you can make progress in
solving the equations without finding the inverse.

° Example: Consider the equations
3x+y =5,
x—4y = 6.

Solve the first equation for x in terms of y, and the second for y
in terms of x:

— 5_1
= 373),

- _3 1
y = —gtzx.

Now assume any values we like for x and y, for example
x =y = 0, and substitute in on the RHS to get new values:

— 5 - _ 3
X =13,)= 2
Substitute these values in:
— 5 1 3 — 1 - _ 3 1 5 — _ 1
X=3+t3.5=25 ¥y = —5tz.3= "1

lecture 16

- 2.

Substitute again to get x =35+3.13 =2} =2.0278, y =
-3+3.8 = -23 = -(0.9583, and again to get x = 1.986, y =
-0.9931, and then x = 1.9977, y = -1.0035, and so on. We see
that the values are converging nicely to the actual solution x = 2,
y = —1. This method is called the Gauss—Jacobi iterative
method, or just Jacobi iteration.

Clearly this method is overkill for two equations in two
unknowns. The advantage is that if it is working at all then we can
expect it to work, say to 4 decimal places, in, say, 10 iterations. For,
say, 10000 equations, that is roughly the amount of work needed to
eliminate 10 of the 10 000 variables, so we’ve saved the work [i.e. over
99% of the total!] needed to eliminate the remaining 9 990.

When does the method not work? Try, for example, swapping the
above equations around, so that

x =6+4y, y = 5—3x.

Now if we start with x =y = 0, we find successively x = 6,y = -3,
then x = -6,y = —13, then x = -46,y = 13, then x = 58,y = 143, ...,
which is easy but not getting anywhere near to the solution. Even if
we start with x = 2.01,y = -1.01, we get x = 1.96,y = —1.03, then
x = 1.88,y = -0.88 then x = 2.48,y = -0.64,

The problem is that any errors in x or y are being magnified by
the process, whereas in the previous version they were being made
smaller. You must not use Jacobi iteration unless the total of the
absolute values of the coefficients on the RHS is less than 1. Some-
times, you could be lucky, and the errors could cancel out; but in the
real world you won’t be.

Equivalently, for Jacobi iteration to work, you need the
coefficients down the main diagonal of the matrix to be larger than the
sum of all the other coefficients in their rows, ignoring signs. Such a
matrix is diagonally dominant.

lecture 16

-3 -

° Example: Use an iterative method to solve the matrix equation

10 -1 1\/[x 12
-1 20 3]|ly| =1-8
1 3-30/\z 15

correct to 3 places of decimals.

The 3x3 matrix is diagonally dominant as 10 > 1+1, 20 > 1+3
and 30 > 1+3. The equation for x is 10x-y+z = 12, or
x=12+4y-Lz. Similarly, -x+20y+3z=-8, or y =
-0.4+ 4x—52; and x+3y-30z = 15, 0or z = -0.5+ 4 + L.

Starting from x =y =z = 0, the first iteration gives x = 1.2,
y = -0.4, z = -0.5. Substituting these values in gives x =
1.2-0.04+0.05 = 1.21, y = -0.4+0.06+0.075 = -0.265 and z =
-0.5+0.04-0.04 = -0.5. The next iteration gives, to 4dp,
x = 1.2235, y = -0.2645 and z = —-0.4862; and the next gives
x = 1.2222, y = -0.2659 and z = -0.4857; and the next x =
1.2220, y = -0.2660 and z = -0.4859. So, to 3dp, x = 1.222,
y = —=0.266 and z = -0.486. [The previous values given were in
fact correct to 4dp.]

Computationally, you may find it easier to substitute in the new
values of x, y and z as soon as you have them instead of waiting for
the next iteration. It is usually slightly more accurate, and it saves
having to store the old values [if you are using a computer program];
otherwise, it makes very little difference. This modification to Jacobi
iteration is usually called the Gauss—Seidel iterative method.

lecture 16

You might think that if you wrote down a 100x100 matrix, let
alone 10000 x 10000, filled with more-or-less random elements, then
it is incredibly unlikely that in each row one element should be so
much larger than all the others in the same row that the matrix is
diagonally dominant. And you would be right. But luckily many large
matrices are far from random.

In many typical applications, the element m;; of a square matrix
M describes the ‘interaction’ between object i and object j. This could
be, for example, the force exerted by component i on component j in
some structure [such as a bridge or an aeroplane]; or the number of
times web page i links to page j; or the length of the road between
town i and town j; or the number of people who live in area i and
work in area j; or the mass of isotope i that is produced when isotope
J decays radioactively for one second; and so on. In such cases, (a) it
is very common that most of the interactions are zero [most web pages
do not link to any other specified page, there is no direct connexion
between the left front wheel of your car and the rear window]; (b) and
otherwise that many are very small [not many people live in Notting-
ham and work in Bristol]l; and (¢) in some applications, the ‘self-
influence’ is likely to be the largest [most people living in Nottingham
will work in Nottingham, though a reasonable number will commute
to Derby or even London].

Property (c) is what tends to make a matrix diagonally dominant.
It is much more likely to happen if (a) or (b) applies; this in turn is
really a property of the system being studied, but it’s very common
physically, either because components are often connected to only a
few other components, or because ‘influence’ is affected by distance.
For numerical work, it’s particularly important if (a) applies. This is
because the resulting matrix may be very large but consist almost
entirely of zero elements—a sparse matrix. Inside a computer pro-
gram, you may be able to store only the non-zero elements, and thus to
process a matrix that is nominally much larger than available com-
puter storage would allow. There are special computer techniques for
this; well beyond the scope of this module!

lecture 16

