
Homogeneous equations

A set of linear equations is homogeneous if the constant terms on
the right-hand side are all zero; that is, the equations take the form

Mx = 0.

If the matrix M is non-singular, then, by definition, it has an inverse
matrix M −1 such that M −1M = I, and so

x = Ix = M −1Mx = M −10 = 0.

In other words, x = 0 is a solution of the equations, and what is more
is the only solution of the equations. This is the trivial solution.

Homogeneous equations always have the trivial solution. To be
‘interesting’, they have to have non-trivial solutions, and this can hap-
pen only if the corresponding matrix, M, is singular.

As we have seen, for a square matrix M, this will happen if and
only if the Gauss–Jordan process breaks down, which in turn will
happen if and only if M has a zero determinant.
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� Example: Solve the equations Mx = 0 in the cases M =

(a) ( 2
1

−1
2 ); (b) ( 2

1
4
2 ); (c) ( sin θ

cos θ
cos θ

− sin θ ); (d) ( 3
2
1

0
−1

2 ); (e) ( 2
1

−1
2

1
1 ).

In cases (a) and (c), M has determinant −1 − 4 = −5 and
cos2 θ + sin2 θ = 1 respectively, so M is non-singular, and the only
solution is the trivial x = 0.
In case (d), there is an extra equation, but the first two are the
same as in case (a), so there is still only the trivial solution.
Note that homogeneous equations can never be inconsistent—
there is always the ‘trivial’ or zero solution.
In case (b), the determinant is 4 − 4 = 0, so M is singular and has
no inverse [even though it is a square matrix]. Effectively, the
equations are x + 2y = 0 twice; we could, for example, choose y
arbitrarily, and then both equations are satisfied by choosing
x = −2y ; this will be a non-trivial solution provided that y ≠ 0
[as, for example, x = −2, y = 1].
If there are only two or three equations, you can do this ‘by
hand’; if you start with many equations, then you will [should!]
be using a Gauss–Jordan tableau, and then you will find that
when you have eliminated as many variables as you can, the
back-substitution phase will give you the general solution in
terms of the variables for which you have no equation.
For example, in case (e), we have the equations x + 2y + z = 0 and
2x − y + z = 0. Eliminating x [subtract twice the first equation
from the second] gives −5y − z = 0, but we have no further equa-
tion to eliminate y . So z [or y , it doesn’t matter] can be chosen
arbitrarily, then −5y = z or y = − 5

1� � z , and x = −2y − z = 5
2� � z − z =

− 5
3� � z . That is a perfectly good solution, but we can eliminate the

fractions by taking z = 5p , where p is arbitrary, and then
x = −3p , y = −p , z = 5p .
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� Example: For what value of t does the system of equations

( 2
0
1

−1
2
1

t
3

−1 )( z
y
x ) = ( 0

0
0 )

have non-trivial solutions? Find the general solution for this
value of t .

Subtracting twice the first row from the third, we have

2
0
1

−1
2
1

t
3

−1
=

0
0
1

−3
2
1

t +2
3

−1
= 2× (t +2) − 3× (−3) = 2t + 13,

so the determinant is zero when t = − 62
1� � .

For this value of t , the Gauss–Jordan tableau will produce
0x + 0y + 0z = 0 when we eliminate x and y from the equations
[check!], so the value of z is arbitrary. In terms of z , the second
equation is 2y + 3z = 0, or y = − 2

3� � z , and then the first equation is
x + y − z = 0 or x = z − y = 2

5� � z . In other words,

( z
y
x ) = ( z

− 2
3� � z

2
5� � z ) = 2

1� � z ( 2
−3

5 ).

As z was arbitrary, so is 2
1� � z , so for t = −6 2

1� � the general solution is
x = 5p , y = −3p , z = 2p , where p is an arbitrary number. [Check
that this solution satisfies all three equations!]

It would be just as good a solution to say x = −5p , y = 3p ,
z = −2p , or x = 25p , y = −15p , z = 10p , or just x = 2

5� � z , y = − 2
3� � z ;

they are all equivalent.
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Suppose we generalise a little bit. We have looked at the equa-
tions Mx = 0 and Mx = b . Suppose x occurs also on the right hand
side? For example, consider

Mx = 3x + b,

where

M = ( −1
1

2
−1 ); x = ( y

x ); and b = ( 1
2 ).

Are there any new principles? Not really, because we can take the x ’s
over to the left: instead of

−1x + 2y = 3y + 1,
1x − 1y = 3x + 2,

we have

−1x + (2−3)y = 1,
(1−3)x − 1y = 2,

or Nx = b , where

N = ( −1
1−3

2−3
−1 ) = ( −1

−2
−1
−1 ) = M − 3I,

where I is the 2×2 identity matrix. So

x = N −1b = . . . = ( 1
−1

−2
1 )( 1

2 ) = ( 0
−1 ),

or, in other words, x = −1 and y = 0.
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So we can in general solve

Mx = λx + b,

where λ is some constant, by solving instead

(M − λI )x = b.

[Not, however,

(M − λ)x = b ;

we have not defined what it might mean to subtract a number from a
matrix, only how to subtract one matrix from another and how to
multiply a matrix by a scalar.]

So in the case where M − λI is non-singular and therefore has an
inverse, and where we know λ, there is just one solution,

x = (M − λI )−1b ;

and, in the homogeneous case where b = 0, there is just the trivial
solution x = 0. If, on the other hand, M −λI is singular, then we are
back to the cases studied earlier.

So we are motivated to look at the homogeneous case where λ is
not known in advance. This is the equation

Mx = λx.

For any value of λ, there is always the trivial solution x = 0. But for
some values of λ, there are other solutions, with x ≠ 0. These values
of λ are called eigenvalues of M, and the corresponding x are eigenvec-
tors of M.
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