
Extended example

Consider the matrix

M = ( 0
1

−2

1
−2

1

−2
1
0 ).

[We’ll see an application for this particular matrix later.] Its charac-
teristic equation is given by det (M − λI) = 0, or

0
1

−2 − λ

1
−2 − λ

1

−2 − λ
1
0

= 0.

Expanding by the top row, this gives

( − 2 − λ)×(( − 2 − λ)2 − 1) − ( − 2 − λ) = 0,

or

− (2 + λ)×((2 + λ)2 − 2) = 0.

So, either λ = −2, or else (2 + λ)2 = 2, that is, 2 + λ = ± √
� �

2. We have
three eigenvalues: −2; −2 − √

� �

2 ≈ −3.414; and −2 + √
� �

2 ≈ −0.586.

To find the eigenvectors, we look at each eigenvalue in turn.
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(a) λ = −2: In this case, the eigenvector equations are Mx = −2x , or

( 0
1

−2

1
−2

1

−2
1
0 )(z

y
x) = −2 (z

y
x);

in other words,

0x + y − 2z = −2z,
x − 2y + z = −2y,

−2x + y + 0z = −2x,

or y = 0, x = −z . So an eigenvector is (1, 0, −1)T [or any non-zero
multiple of this].

(b) λ = −2 − √
� �

2: In this case, the eigenvector equations, Mx =
− (2 + √

� �

2)x , are

0x + y − 2z = − (2 + √
� �

2)z,
x − 2y + z = − (2 + √

� �

2)y,
−2x + y + 0z = − (2 + √

� �

2)x,

or y = − √
� �

2x , x + z = − √
� �

2y and y = − √
� �

2z [note that the middle
equation is ‘the same as’ the sum of the other two, apart from a
factor of √

� �

2]. So an eigenvector is (1, − √
� �

2, 1)T [or any non-zero
multiple of this].

(c) λ = −2 + √
� �

2: Similarly, an eigenvector is (1, √
� �

2, 1)T [details left as
an exercise].

Check that these eigenvalues and eigenvectors satisfy the pro-
perties 1–4 given in the course booklet. [For property 5, note that, for
example, if B = A2 and Ax = λx , then Bx = A Ax = A λx = λAx = λ2x ,
so x is also an eigenvector of B, but with eigenvalue λ2.]
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OK, so what is the ‘application’ mentioned earlier?
None of the following detail is important or examinable, but
you need to know the general idea.
Consider a stretched string with fixed endpoints and with three equal
masses equally spaced along it. Imagine that the string is ‘plucked’ so
that the masses are displaced transversely by amounts x , y and z :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .� �

x

�

y

�

z
�

How do these masses move? Intuitively, we know that the string will
‘twang’; the masses will oscillate to and fro. Left as an exercise in
mechanics: the force on the left-hand mass is proportional to y − 2x , on
the central mass is proportional to x +z − 2y , and on the right-hand
mass is proportional to y − 2z . In other words,

ẍ = k(y − 2x), ÿ = k(x +z −2y), and z̈ = k(y − 2x),

where the dots indicate time derivatives, and k is some constant
[related to the masses and the string tension]. In other words,

ẍ = kMx,

where M is the matrix above and x = (x, y, z)T. [Note that x is not ‘the
position’ of any one of the masses, but is a vector whose components
are the displacements of all of them.]

Now this differential equation is quite messy to solve. But if x is
an eigenvector of M with eigenvalue λ, then it becomes

ẍ = kλx,

which is the differential equation for SHM, ‘simple harmonic motion’;
the matrix M has disappeared, and we can solve the equation.
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What do the solutions look like? Basically, like the eigenvectors, but
‘oscillating’ in size with frequency √

�������

−kλ.

(a) Corresponding to the eigenvector (1, 0, −1)T, we have:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .� �

�

�

�

(b) Corresponding to the eigenvector (1, − √
� �

2, 1)T, we have:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .� �

�

�

�

(c) And corresponding to the eigenvector (1, √
� �

2, 1)T, we have:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .� �

�

�

�
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Any combination whatsoever of positions of the masses can be
represented as a weighted sum of these eigenvectors, so that any
motion can be represented as a combination of the motions described
above. Effectively, we can decompose any solution of this problem in
mechanics into these three more basic solution, which proceed
independently [and orthogonally—check!].

It is very usual that a complicated mechanics problem can be
reduced to a collection of more basic problems, and the general solu-
tion expressed as a sum of solutions of these. It is also very usual that
the eigenvectors seem to relate to these basic solutions and to
interesting features of the physics/engineering as well as to ‘mere’
mathematics.

For example, in the present problem, in real life there will be
‘friction’ damping the motion. This will dampen the high-frequency
motions faster than the low-frequency motions, so after a while, only
the ‘fundamental’ [solution (c) above] will remain. [You can make a
skipping rope, eg, oscillate rather like solutions (a) or (b), but it’s
much harder than (c).]
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If we extend the problem to four, five, . . . , a hundred, . . . masses
equally spaced on a light string/spring, then in the limit we get some-
thing very like a uniform heavy spring. The corresponding eigenvec-
tors then look more and more like the functions sin x [the ‘fundamen-
tal’], sin 2x [the ‘first harmonic’], sin 3x , sin 4x and so on.

In music, the proportions of the various harmonics and how they
decay through ‘friction’ determines what a note sounds like; the pro-
portions are obtained by Fourier analysis [beyond the scope of this
module] of the initial string shape when it is plucked, bowed or hit.
But the same basic equations occur not only with sound waves, both
transverse and longitudinal, but also with water waves and with elec-
tromagnetic waves; and with, for example, the equations governing
the oscillations of a building in a high wind [where the fundamental
period of oscillation may be many seconds].

It was obtaining the ‘wave equations’ from his theory of electri-
city, with waves travelling at the speed of light, that led Maxwell to
infer the electromagnetic nature of light and the spectrum, and that
led to the discovery of radio waves. It’s very common in maths that
finding the same equations in different contexts leads to physical
inference about the nature of phenomena.
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