Vector products
Given two vectors, @ and b, their vector, or cross, product is
axb = absinfn,

where a is the size of a, b is the size of b and 6 is the angle between
a and b, and n is the unit vector perpendicular to both @ and b.

axb

a

Wait! The vector perpendicular to @ and b? There are two such vec-
tors, one ‘up’, one ‘down’. We choose the one such that a, b and n
form a right-handed triple of vectors. As this is an arbitrary decision

that the real world doesn’t have to agree with, physical laws cannot
depend on it.

It has many applications in practice as bsin @ is the perpendicular
distance of the [end of] b from [the line of action of] a:

[and a sin @ is the distance of a from b]. So the size of axb is the area
of the parallelogram based on a and b [‘base times perpendicular
height’]; and axb itself is a [pseudo-]vector representing that area.
[Remember that areas are ‘almost’ vectors?]
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Properties:

° axb = -bxa. [The right-hand rule applies the other way.]
This result shows that we need to be very careful when doing
algebra with vector products—it is essential to keep factors in
the right order.

° If @ and b are parallel, then 8 = 0 and axb = 0. This is a good
way to test for vectors being parallel.

° The unit vectors i = (1,0,0), j = (0,1,0) and & = (0,0,1) have
size 1, are perpendicular to each other, and in that order form a
right-handed triple. So

IX1 = jXJ = kxk = 0;
ixj = kR, jxk = i, kxi = j,
JXi = -k, kxj = —-i,ixk = —j.

Example

(21 +j—-2k)x(3i +4k)

= 6IXi+3Jxi—6kxi+8ixk+4jxk -8k xk
60-3k-6j-8j+4i-80
4i - 145 -3k.

[With practice, you may be able to leave out the intermediate steps.]

It’s always worth checking that the result is perpendicular to the
vectors you started with:

(4,-14,-3)+(2,1,-2) = 8-14+6 = 0,
(4,-14,-3)+(3,0,4) = 12-12 = 0;

it’s not fool-proof, but it’s a quick and easy test, and will show up most
sign errors and arithmetic blunders.
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More generally,
(I,m,n)x(p,q,r) = (mr-nq)i+(np-Ir)j+(qg-mp)k.

That’s pretty horrible, so almost no-one remembers it that way.
Instead, notice the cross-products, and think of determinants:

i jk
(,m,n)x(p,q,r) = |l m n|.
b qr

You should check that this is the same result, and also check the
previous numerical example; be particularly careful about signs, espe-
cially when working out the coefficient of j. [Some people and books
treat this expression as the definition of the vector/cross product.]

Note that swapping the order of @ and b corresponds to swap-
ping two rows of the determinant, and so changes the sign; also that if
a and b are parallel, then the second and third rows are proportional
to each other, and we can subtract a multiple of one row from the
other to give a row of zeros, so that the result is 0, as expected.

Advice: Use co-ordinates [list notation] if that’s what you’re
given or if you have to, but don’t rush. You often know things about
sizes and directions of [eg] forces and velocities that enable you to use
the definition directly.
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Examples

(a+b)x(a-b)
= axa +bxa —-axb - bxb
= 0-axb-axb-0 = -2axb.

Note that this is quite different algebraically from

(a+b)-(a-b)
= aa+ba-a-b-bb = a®-b2,

very similar to ordinary ‘difference of squares’ algebra.

If a force F acts at a point r, then its moment [turning effect]
about the origin is rxF. [The size of this is therefore the size of
the force times the distance of its line of action from the origin.]
For a body to be in equilibrium, not only must the forces on it add
to 0, but so also must their moments—this is the three-
dimensional version of the balance [‘see-saw’] law. [Compare
also the ‘ladder against the wall’ problem.]

What is the area of the triangle whose vertices are the origin and
the points (2,1, -2) and (3,0, 4)?

As previously, (2,1, -2)x(3,0,4) = (4,-14,-3). This is the vec-
tor representing the area of the parallelogram based on the vec-
tors (2,1,-2) and (3,0,4). So the size of that area is
V4% +(-14)*+(-3)% = V16+196+9 = v221 = 14.86. The trian-
gle is half of the parallelogram, so its area is about 7.43.

Exercise: We already know the angle between these vectors and
their lengths, from previous examples; so check this answer
using ordinary trigonometry.
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Notes:

° If we look at two-dimensional problems, e.g. with all the ‘action’
taking place in the xy-plane, then all the ‘interesting’ vectors—
the forces, velocities, and so on—are also in that plane, and any
cross-products are perpendicular to that plane [so in the z-
direction]. For example,

(2i - j)x(i+2§) = dixj—jxi = 5k.

° You may be thinking that the dot and cross products are a bit
arbitrary, and that there ought to be many other ways of combin-
ing sizes and directions. But it turns out that (a) there are philo-
sophical and physical reasons why most other ways are of no
practical use, and (b) dot and cross products occur in many physi-
cal laws. Recognising them as part of the ‘modelling’ process
when thinking about real-world problems, and then understand-
ing their properties, makes life much easier. But (¢) there is a
third way, the tensor or outer product of two vectors; not
explored here, but sometimes useful in tensor algebra/calculus.
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