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HGCMCE—Exam 2007—Solutions and Feedback

1 (a ) Truncation errors occur when a limiting process is stopped after a finite number of steps; for
example, the approximation

sin x ≈ x − 6
1
� � x3,

obtained by truncating the Taylor series for sin x , has truncation error of − 120
1

� ����� x5 + . . . .

Rounding errors occur when arithmetic values are not represented exactly in a computer or
calculator; for example, when 3

1
� � or √

�

2 are rounded to 12dp. [A form of truncation error, but
less subject to analysis!]

Cancellation errors occur when the result of an addition or subtraction is much smaller than
the addends/subtrahends, so that the result has fewer significant figures. For example, when
working out ( f (x +h)− f (x)) /h in an attempt at numerical differentiation, if h is taken small,
then there is severe cancellation error, whereas if h is large there is severe truncation error;
either way, the results are not good.

Bookwork; 2 marks each part [6]

(b ) (i) A graph suggests three real roots, around 2, − 3
1
� � and −2 [or − 2

3
� � ]. Newton–Raphson

gives the iteration

x → x −
3x 2 − 3

x3 − 3x − 1
� ��������������� .

A starting value of 2 → 9
17
� ��� → 1.8794. . . → 1.87938524 → . . . [same to 8dp]; simi-

larly, − 3
1
� � → −0.34722. . . → −0.347296353. . . → . . . [same to 7dp]; and −2 →

− 3
5
� � → −1.5486111. . . → −1.5323901. . . → −1.5320889. . . → . . . [same to 6dp]. So,

to 5dp, the roots are 1.87939, −−−0.34730 and −−−1.53209. [Check: sum of roots is zero.]

Similar to coursework and examples. 5 marks for appropriate method and application,
2 for each numerical root. Other methods than NR acceptable, of course. [11]

(ii) Graphs of y = x 2 and y = sin x show the root x = 0 and a second root near x = 1 The
iteration x → √

�������

sin x works well: 1 → 0.9173 . . . → 0.89105. . . → 0.88189. . . → . . . →
0.8767262. . . . The roots are 0 and 0.87673 [to 5dp].

Similar to coursework and examples. NR or other methods OK, but more work. 2
marks for each root, 4 for a suitable method and application. [8]

Comments: Mostly rather well done. A significant minority of students, despite drawing correct
graphs, failed to find all three roots in (i) and/or the zero root in (ii). If your graph shows three
roots, perhaps there are three roots! A few students also had great difficulty describing the dif-
ferent sorts of error.
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2 (a ) The error term in the composite form of Simpson’s Rule is proportional to [a power of the
strip width and] the fourth derivative of the integrand at some point of the interval. So the
composite form works well in cases where that derivative is ‘well-behaved’ [eg continuous],
and especially if its average value is small; and badly if it is ‘ill-behaved’ [not defined,
discontinuous, tending to infinity, and so on] at any point of the interval, including the end-
points.

For example, consider I = ∫0

1√
�������

sin x dx . This is ill-behaved near x = 0, where the integrand is

approximately √
�

x, which is not itself too bad but has a derivative that tends to infinity. Two
approaches that may be used are:

(i) A substitution, such as [in this case] u2 = x , so that 2u du = dx and I = ∫0

1√
���������

sin u 2 2u du ,

where the integrand is now approximately 2u2 for small u , and is well behaved for 0 u 1.
(ii) Subtracting off the bad behaviour. In the present case, for small x , √

�������

sin x ≈ √
�

x, so
I = ∫0

1
(√
�������

sin x − √
�

x + √
�

x) dx , and now √
�������

sin x − √
�

x is [relatively] well-behaved for small x

[enough for numerical integration], while ∫0

1√
�

x dx = 3
2
� � can be evaluated analytically.

Bookwork: 3 marks each for the comments and for the two examples. [9]

(b ) Following the hint,

∫0

1
log sin x dx = [x log sin x]0

1 − ∫0

1
x d/dx(log sin x) dx = log sin 1 − ∫0

1
x cos x / sin x dx,

in which the integrand x cot x is now well-behaved near x = 0.

Using Simpson’s Rule with two strips, we have ends = f (0) + f (1) ≈ 1+0.642093 = 1.642092
[working to 6dp throughout]; evens = 0, odds = f ( 2

1
� � ) ≈ 0.915244, and so I2 =

2
1
� � (ends + 4odds + 2evens) / 3 ≈ 0.883845.

With four strips, ends ≈ 1.642092, evens = old evens + old odds ≈ 0.915244, and odds =
f ( 4

1
� � ) + f ( 4

3
� � ) ≈ 0.979079+0.805070 = 1.784149, and so I4 ≈

4
1
� � (1.642092 + 4×1.784149 + 2×0.915244) /3 ≈ 0.884098. As I2 and I4 differ by [only]
0.000253, our error estimate is ε ≈ − 0.000253/15 ≈ −0.000015, so we can already expect I4
to be correct to 4dp, with a ‘corrected’ value of I4 − ε ≈ 0.884113, and so

∫0

1
log sin x dx = log sin 1 − ∫0

1
x cot x dx ≈ −0.172604 − 0.884113 = −1.056717,

or −−−1.0567 to 4dp.

Familiar techniques. Maple gives −1.056720206. A little more work, but unnecessary, to go
to I8 for more accuracy. 4 marks for initial analysis, 4 for knowing and being able to apply
SR, 2 each for I2 , I4 , the answer, and error control. [16]

Comments: Also mostly well done. A few students assumed that f (0) = 0, despite the evidence
when they looked at other values of f , which rather spoiled convergence. In an exam, you might
be expected to go to I8 , but I16 , let alone I32 , would be very unfair in an exam, so those who did
just that really should have stopped and thought instead.
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3 (a ) The corresponding tableau is� �������������������������������������������������������������������������������������������������������������������
4 0 1 1 2 . . . (1)
3 1 3 1 1 . . . (2)
0 1 2 0 4 . . . (3)
3 2 4 1 3 . . . (4)� �������������������������������������������������������������������������������������������������������������������

(2)− 4
3� � × (1) 0 1 9/4 1/4 –1/2 . . . (5)

(4)− 4
3� � × (1) 0 2 13/4 1/4 3/2 . . . (6)� �������������������������������������������������������������������������������������������������������������������

(3)− (5) 0 0 –1/4 –1/4 9/2 . . . (7)
(6)−2× (5) 0 0 –5/4 –1/4 5/2 . . . (8)� �������������������������������������������������������������������������������������������������������������������
(8)−5× (7) 0 0 0 1 –20 . . . (9)
− 4× (7) − (9) 0 0 1 0 2 . . . (10)
(5) − 4

9� � (10) − 4
1� � (9) 0 1 0 0 0 . . . (11)

4
1� � (1) − 4

1� � (10) − 4
1� � (9) 1 0 0 0 5 . . . (12)

��
�
�
�
�
�
�
�
�
�
�
�
�
�

From equations (12), (11), (10) and (9), in that order, we read off x = 5, y = 0, z = 2 and
w = −20, or equivalently x === (5, 0, 2, −−−20)T.

Standard method on numerical example. 4 marks for method, 4 for initial tableau, 4 for
accuracy. [No excuse for wrong answers!] [12]

Equations (1), (5), (7) and (9), in that order, constitute a lower triangular matrix obtained
from A only by subtracting multiples of one row from another; so its determinant is the same
as det A, and is the product of its diagonal elements, 4×1× (− 4

1� � )×1 = −−−1. Standard method. [3]

To find A−1, write an identity matrix I to the right of the vertical line in place of b . Then
reduce as above; equations (12), (11), (10) and (9), in that order, then constitute I to the left
of the line, and the corresponding right-hand sides constitute the rows of A−1. Bookwork. [3]

(b ) Partial pivoting means using the equation with the largest coefficient [in absolute value] for
the variable to be eliminated in preference to the first [remaining] equation. This means that
in eliminations of the form equation( j) = equation( j) − λ ×equation(i), as the above tableau,
the multiplier λ is always such that � λ � 1, so that rounding errors in the equations do not
grow unreasonably. If we allow � λ � > 1, then in systems with perhaps 100+ equations,
rounding errors may grow exponentially, making the results meaningless.

The given equations are equivalent to εx + y = 1, x + y = 2. If, following the tableau method
as above, we use the first equation to eliminate x from the second, we have y − y /ε = 2 − 1/ε ,
so y ≈ 1, and the value of x = (1−y) /ε from the first equation is subject to severe cancella-
tion error. If on the other hand we use the second equation to eliminate x , then we have
y − εy = 1 − 2ε , so again y ≈ 1, but now x is found from the second equation, x = 2−y , and
can be obtained to the same accuracy as y .

Bookwork, but numerical example only discussed in general terms. 2 marks for definition, 2
for reason and 3 for analysis of given example. [7]

Comments: Finding determinants was rather hit-or-miss. You do need to take care if you swap or
scale equations. Partial pivoting defeated most of you; you were OK with describing what and
why, but not with the actual example. The solution is ‘obviously’ x ≈ y ≈ 1, so the whole point
was to track what happened to the errors with and without pivoting. Far too many of you just
solved the equations, found the same ‘exact’ solution either way, and let that stand without com-
ment.
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4 (a ) In order to take a ‘step’, the assumption is that we know y , and hence f (x, y), at [for the
three-point formula] three equally-spaced values of x , the current one, x0 and two previous
ones x−1 , x−2 , where in general a subscript i indicates values at xi = x0 + ih , with h the step
length.

The Adams–Bashforth formula is used to extrapolate, using a quadratic approximation to f
based on the last three values, to the next value of y , given that y1 = ∫x0

x1 f (x, y) dx . This gives

a predicted value, y1
* , for y1 , and hence for f1

* = f (x1 , y1
* ).

The predicted values are then typically used in the Adams–Moulton formula, which interpo-
lates a cubic approximation to f based on the known and predicted values to estimate a
corrected value of y1 . As interpolation is usually more accurate than extrapolation, this is
usually an improvement, after which the step is complete, we can assume y known as far as
x1 , and the start the whole process again to take the next step as far as is thought desirable.

If the corrected value is very different from the predicted, we could iterate the Adams–
Moulton formula; but this is usually rather a sign that h is too large.

Bookwork. Rather less wordy version of the above acceptable! [6]

Pro: Fast [only two function evaluations per step, compared with Runge–Kutta four or five,
even if more accurate 4- or 5-point formulas are used] and efficient [retains and uses infor-
mation from previous steps]; predictor-corrector process gives a degree of error
knowledge/control. Con: Must be ‘seeded’ with initial values, beyond the initial conditions,
obtained by some other method [not necessarily hard if, eg, a Taylor series valid near the
initial x is known]; relatively difficult to change step length adaptively.

Bookwork. [4]

(b ) The results are as follows:

x y f AB ypred fpred AM ycorr� �����������������������������������������������������������������������������������������������������������������������������������������������������������������
–0.2 1.020201 –0.204040

0.0 1.000000 0.000000
0.2 1.020201 0.204040 0.306060 1.081413 0.432565 0.315242 1.083250
0.4 1.083250 0.433300 0.558438 1.194937 0.716962 0.569382 1.197126
0.6 1.197126 0.718276 0.883979 1.373921 1.099137 0.899042 1.376935
0.8 1.376935 1.101548 1.334140 1.643763 1.643763 1.356883 1.648311
1.0 1.648311

�
�
�
�
�
�
�
�
�
�

So we estimate y(1) ≈≈≈ 1.6483. [For comparison, √�e ≈ 1.648721.] In the table, f = xy , AB is
the extrapolated mean f [eg, in the line for x = 0.4, it is
(23×0.433. . . − 16×0.204 . . . + 5×0.000) /12 = 0.558. . . ]; ypred is the predicted next y [eg
1.083 . . . + 0.2×0.558. . . ≈ 1.195], followed by the corresponding predicted f ; then the
column AM is the interpolated mean f obtained from the same preceding values of f and the
just-obtained predicted f , and ycorr is the corrected y , carried over to the next line of the
table. [All calculations in the table shown to 6dp but carried out to full calculator accuracy.]

Standard technique on numerical problem. 5 marks for implementing the method, 2 marks
per ‘interesting’ line for general numerical accuracy, 2 for the final result. Potential bonus
for discussion of errors. [15]

Comments: The bookwork was reasonably well done. But there were only a very few good solu-
tions to the numerical part. Even though the formulas were there in front of you, several students
used the Modified Euler method instead. Others made numerical slips that really should have been
picked up during the calculation—the question gave you a hint about what the ‘exact’ solution
was, but even without that you should stop and think if a table seems to be ‘blowing up’.
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5 (a ) Replacing the second derivatives in the wave equation by the given approximation, and
replacing φ by its approximation u , we have

= c2

∂x2
∂2φ
����� ≈ c2(φ(x +h, t) − 2φ(x, t) + φ(x −h, t)) /h2 ≈ c2(ui +1, j − 2ui, j + ui −1, j ) /h2,

∂t 2
∂ 2φ
����� ≈ (φ(x, t +k) − 2φ(x, t) + φ(x, t −k)) /k2 ≈ (ui, j +1 − 2ui, j + ui, j −1) /k 2

whence

ui, j +1 ≈ 2ui, j − ui, j −1 + (kc /h)2(ui −1, j − 2ui, j + ui +1, j ),

Bookwork. [7]

(b ) When j = 0, we find ui,1 depends on ui,−1 , which is unknown. However,

φ(x, k) = φ(x, 0) + k
∂t

∂φ
� ��� + 2

1
� � k 2

∂t 2
∂ 2φ
����� + . . . = φ(x, 0) + k

∂t

∂φ
� ��� + 2

1
� � k2c2

∂x2
∂ 2φ
����� + . . . ,

from the Taylor series, and so

ui,1 ≈ ui,0 + k .ui,0 + 2
1
� � k2c2(ui +1,0 − 2ui,0 + ui −1,0 ),

where everything on the RHS in known from the initial conditions.

Bookwork. 2 marks for the reason, 4 for the equation. [6]

(c ) We have

ui,1 ≈ ui,0 + 2
1
� � (4 /π)2(ui +1,0 − 2ui,0 + ui −1,0 ) [as .ui,0 = 0];

ui, j +1 ≈ 2ui, j − ui, j −1 + (4 /π)2(ui +1, j − 2ui, j + ui −1, j ) [for j 1, −1 i 1];

with initial/boundary conditions u ± 2, j = 0, u ± 1, j = 1/√
�

2, u0,0 = 1.

So, successively, we have [all calculations to 5dp]:

u ± 1,3 ≈ −0.63410 − 0.37136 + (4 /π)2(−0.44837 + 0.63410) ≈ −0.70437.

u0,3 ≈ −0.89674 − 0.52518 + (4 /π)2(−0.63410 + 0.89674) ≈ −0.99614, and

u ± 1,2 ≈ 0.74272 − 1/√
�

2 + (4 /π)2(0.52518 − 0.74272) ≈ −0.31705,

u0,2 ≈ 1.05036 − 1 + (4 /π)2(0.74272 − 1.05036) ≈ −0.44837,

u ± 1,1 ≈ 1/√
�

2 + 2
1
� � (4 /π)2(0 − 2/√

�

2 + 1) ≈ 0.37136,

u0,1 ≈ 1 + 2
1
� � (4 /π)2(2 /√

�

2 − 2) ≈ 0.52518,

So, in this approximation,

φφφ(0, 3) ≈≈≈ −−−0.99614, φφφ( ±±± 4
1
�� � �� � πππ, 3) ≈≈≈ −−−0.70437, and φφφ( ±±± 2

1
�� � �� � πππ, 3) === 0.

Numerical example. 3 marks for equations, 3 for method, 4 for numerical accuracy. [10]

For stability, require kc h ; this is breached, but only mildly, by k = 1, c = 1, h = 4
1
� � π .

Bookwork. [The exact solution would show φ(0, 3) = cos 3 ≈ −0.98999, so the approximate
solution shows increasing oscillations.] [2]

Comments: Again, the bookwork was well done, but the numbers proved elusive. The discussion
in lectures showed that we had to ‘progress’ through the solution for increasing values of t ; there
is very little to store, and no point at all trying to solve the equations algebraically. If you find it
hard to keep track of the results, then draw a grid of suitable size, and annotate the grid points with
the values of ui, j as you find them.
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