
Quadrature -- ‘extras’
Romberg Integration

[This topic is really just so that you know the name in case you meet it
elsewhere.]

As previously noted, if you know how the error [in any numerical
process] behaves as a function of [eg] the number of strips, then we
can firstly estimate it, and secondly use the estimate to get an
improved estimate of [in this case] the integral. Romberg’s idea was
simply that the improved estimate [using Richardson extrapolation]
itself has an error, which we can get a formula for, and which can
therefore itself be improved; and the improvements have formulaic
errors which can be improved; and so on.

More specifically, we start with, for example, the Trapezoidal
Rule, I ≈ 2

1
� � (b −a)( f (a) + f (b)), with a single strip. Down the left-hand

column, write down successive results of the composite form of the
Trapezoidal Rule with 2, 4, 8, . . . strips, as far as necessary. In a
second column, write down the result of using Richardson extrapola-
tion on successive pairs of values. [This is exactly like what we did
with Simpson’s Rule except that the divisor 15 = 24 − 1 is replaced by
3 = 22 − 1.] In a third column, write down the result of extrapolating
the second column. [The second column is Simpson’s Rule.] In a
fourth column, use extrapolation on the third column [using as divisor
63 = 26 − 1]. Then a fifth column similarly [using divisor 255 = 28 − 1],
and so on.

This method is essentially ‘free’; the hard work lies in evaluating
the integrand at lots of x -values. So it’s a Good Idea, but it doesn’t get
us much further unless we are using 16 or 32 strips, so it’s more for
computer than hand use. Also, it relies on the errors behaving ‘prop-
erly’; nothing along these lines can rescue the poor convergence of all
quadrature methods when the integrand is not well-behaved.
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Gaussian Integration

[This topic is really just so that you know the name in case you
meet it elsewhere.] Simpson’s Rule and other Newton–Cotes formulas
are based on the notion of passing a polynomial of degree n through
n +1 points. But if we have a slightly more general rule, of form

I ≈ a1 f (x1) + a2 f (x2) + a3 f (x3) + . . . + an f(xn ),

then we can choose the ai and the xi [which will no longer be equally
spaced] so that the formula is exact whenever f(x) is a polynomial of
degree 2n −1. [There are 2n a ’s and x ’s to choose, and 2n arbitrary
coefficients in the polynomial, so making the Rule exact gives us 2n
equations in 2n unknowns.]

For each n , this optimal choice only has to be determined once.
The resulting formula is the n -point Gauss’s Rule. It is usually much
more accurate than Simpson’s Rule or Romberg integration with the
same amount of work. But it’s quite hard to determine the error
without doing almost as much work again [which undoes the
efficiency]. So the main application is to a series of integrals in which
we can estimate in advance how many strips/points will be needed.

In the above form, you will also see the description Gauss–
Legendre integration, as the xi turn out to be the zeros of the so-called
Legendre polynomials, which are important in all manner of bits of
applied maths. You will also see the same general idea applied to
various improper or weighted integrals. For example, we can use the
zeros of the Laguerre polynomials [which are important etc] to find xi
so that the integral ∫0

∞ f (x) e−xdx is estimated exactly whenever f is a
polynomial of degree 2n −1 [Gauss–Laguerre integration], and
Gauss–Hermite integration for integrals of form ∫ − ∞

∞ f (x) e−x2

dx , and
lots of other variants.
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Adaptive integration

[This topic is really just so that you know the name in case you meet it
elsewhere.]

In integrals like ∫0

1√
�

x dx , the problem was that the integrand
behaved badly near x = 0; everywhere else, there is no problem, and
Simpson’s Rule works perfectly well. There is no point compositing
the whole integral repeatedly, so that we use thousands or millions of
strips between, say, x = 0.1 and x = 1.

The basic idea of adaptive integration is that instead of simply
doubling the number of strips, we split the integral into two bits, and
integrate each separately to within half the permitted error. Suppose
we want ∫0

1√
�

x dx to within 0.000001. Then we find I2 and I4 as previ-
ously, and discover that the error is too large. So we instead find
∫0

2
1

� �

√
�

x dx and ∫
2
1

� �

1√
�

x dx separately to within 0.0000005, and add the

results. We already know I2 for each of these, so we now work out I4 ,
estimate the error, and repeat.

In this particular case, each right-hand half will work well, so
only a few strips will be needed; the left-hand halves will work badly,
so we will continue to need to split them, until indeed the strip width
is tiny. But the total work done remains quite small.

This idea is much more use for computer programs, as it provides
a reasonable way of evaluating any integral that has only isolated
pockets of bad behaviour without the need for thought. It concen-
trates the effort on the places where f needs lots of evaluations, but
leaves the strips wide where possible. For hand/calculator use, keep-
ing track of the calculation is quite hard, and the effort only pays off
when the number of strips is quite large; so other strategies are
nearly always better.
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Line, volume, surface integrals.

[This topic is really just so that you know what to do in case you meet
it elsewhere.]

General line and surface integrals can be reduced to ‘ordinary’
integrals using the parametrisation that describes the line or surface.
So we are left with the problem of extending simple quadrature, as
previously described, to the case of ‘multiple’ integrals, such as

I = ∫ ∫ ∫ f (x,y,z) dx dy dz,

with some more-or-less messy limits that depend, in general, on some
of the variables.

You can use Simpson’s Rule [as composited or otherwise adapted
above] to evaluate each integral. But note the ‘combinatorial explo-
sion’ problem: if we need, for example, just 8 strips in each direction,
we are doing 9 evaluations of f for each x -integral, and so for each
value of y ; thus 81 for each y -integral, and so for each value of z ; and
729 to integrate out over z . If we have to go to 16 strips, then we will
need 173 = 4913 evaluations of f , and the work is rapidly mounting
up. Worse, many real-life problems involve more than three variables,
and it is common for real-life volumes or surfaces to be rather messy
[think, for example, the surface of, say, an aeroplane or a F1 car, or
the volume of almost any machine or engineering construction]. Gets
decidedly messy! Note that any ‘corner’ or ‘edge’ in the surface is
equivalent to bad behaviour in the integral, so is likely to result in the
need for many strips.

There is no universal good answer; a common practical answer
on the computer is . . .
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Monte-Carlo integration
[This topic is really just so that you know the name in case you meet it
elsewhere.]

This is a generic technique that can be applied to all sorts of
numerical problems. Suppose, for definiteness, we are trying to evalu-
ate

I = ∫ ∫ ∫V
f (x,y,z) dx dy dz

for some function f over some volume V. Choose a random point
inside V. Then the value, call it f̂ , of f at that point is an unbiassed
estimator of f inside V. So that value times the volume of V is an
unbiassed estimate of I:

I ≈ f̂ ×V.

The trouble is—of course it couldn’t be that simple!—is that although
the estimate is unbiassed, it has an outrageously large expected error,
so it is essentially useless.

But we know how to reduce errors! We do the experiment lots of
times, and average the results. We choose some large number N,
choose N random points, then

I ≈ ( f̂1 + f̂2 + . . . + f̂N )×V /N.

and the expected error is reduced by a factor √
���

N, and so can be made
as small as we like. [There are other ways to reduce the error as well,
which you can look up in the literature.]

The trouble is that we need N large; you will often need
N = 1000 to get even 1sf, and so 100 000 to get 2sf, 10 000 000 to get
3sf, and so on—with care and luck you may be able to squeeze an
extra figure. So this is not in any way competitive with ordinary
quadrature. Except that ordinary quadrature starts to look silly when
there are several dimensions and awkward volumes or surfaces,
whereas Monte-Carlo doesn’t care. It will take pretty much the same
amount of work whether there is one dimension, or three or ten or a
hundred, and whether or not there are corners. But this is definitely a
method for the computer!
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