
Linear Algebra
This section is to do with the numerical analysis of matrices. Given
some matrix A, there are various things we might want to do. The
most common are: (a) solve a system of equations, Ax = b ; (b) find the
inverse, A−1, of A; (c) find the determinant, det A, of A; and (d) find
some or all of the eigenvalues and/or eigenvectors of A, that is the
numbers λ and non-zero vectors x such that Ax = λx .

For obvious reasons, we will mostly use diddy examples where
the matrices are, say, 3×3. In real life, matrices can be any size, and
you will indeed find 3×3 matrices in use, but also 100×100 and even
10000×10000. [Examples of such applications later!]

For big matrices, the diddy things you may have learned in ear-
lier modules often do not scale very well. The storage needed may be
a problem [10000×10000 128-bit ‘real’ numbers is already 1.6 giga-
bytes, not these days a problem in itself, but you may need several of
them, and copies of parts of them, and you want to be manipulating it
all in RAM rather than on disc]. The time needed may be a problem
[if you multiply two 10000×10000 matrices, then the result has 108

elements, each obtained by doing 104 multiplications and additions,
which will take around 20 minutes on a 100GHz computer with 5Gb of
RAM, and much longer on the (current) average home PC]. If you are
doing so many operations, then rounding errors may be a problem,
especially as many matrices, even small simple ones, are ill-behaved.

lecture 11

- 2 -

Gaussian elimination

This is the systematisation of the ‘elimination’ process used to solve
simple simultaneous equations. For example, consider the equations

(−1
2
1

−2
−1
1

2
3

−1)(z
y
x) = (−7

−3
4).

[Equivalently,

−x − 2y + 2z = −7].
2x − y + 3z = −3
x + y − z = 4

We use one equation, eg the first, to eliminate x from the others,
giving a reduced set of equations in which there are fewer unknowns.
Repeating, we get, eventually, down to [with any luck at all] one equa-
tion in one unknown, which we can solve and then work back. In this
case, we get

−3y + 5z = −11; and −y + z = −3;

then, eliminating y ,

2z = −2,

so that, successively, z = −1, −3y − 5 = −11 so y = 2 and x + 2 − (−1) =
4 so x = 1.

How do we systematise that process? We use a tableau.

lecture 11

- 3 -

���
1 1 –1 4 .. . (1)
2 –1 3 –3 . . . (2)

–1 –2 2 –7 .. . (3)���
(2)−2× (1) 0 –3 5 –11 . . . (4)
(3)+(1) 0 –1 1 –3 .. . (5)���
(4)−3× (5) 0 0 2 –2 . . . (6)���
(6)÷ 2 0 0 1 –1 . . . (7)
(5)− (7) 0 –1 0 –2 . . . (8)
− (8) 0 1 0 2 .. . (9)
(1) − (9) + (7) 1 0 0 1 .. . (10)���

�
�
�
�
�
�
�
�
�
�
�
�
�

Equations (7), (9) and (10) [the ‘back substitution’ phase] tell us that
z = −1, y = 2 and x = 1, as previously.

Note that there is still a certain amount of freedom in deciding
which equations to use to eliminate which variables. When working
exactly and with small numbers of equations, the choice scarcely
matters. But with large numbers of equations, the exact values soon
become too large to hold, and so we have to use ‘real’ arithmetic,
introducing rounding errors. When we derived equation (6), we multi-
plied (5) by 3; so any rounding errors in (5) would also have been
multiplied by 3. Doing that once doesn’t matter; do it 100 times, and
the errors soon become serious.

So, in real life, Gaussian elimination is always performed with
pivoting. The pivot is the element used to eliminate a variable. We
have a choice of pivots; any non-zero element in the relevant column.
If we choose as pivot the numerically largest element, then all the
multipliers are numerically 1, so the rounding errors stay small.

The other thing to note is that we use equations only to eliminate
variables from those still ‘active’. Eg, we did not use (5) to eliminate y
from (1); there is no need, we can leave it until we know y , which
saves a significant amount of work in a large tableau.

lecture 11

- 4 -

Matrix inversion

We can use a very similar tableau method to find A−1. The trick
is to start with a unit matrix on the right, and use the same sorts of
‘row operations’ to finish with a unit matrix on the left. For example:

� ���
1 1 –1 1 0 0
2 –1 3 0 1 0

–1 –2 2 0 0 1� ���
0 –3 5 –2 1 0
0 –1 1 1 0 1� ���
0 0 2 –5 1 –3� ���
0 0 1 –5/2 1/2 –3/2 *
0 –1 0 7/2 –1/2 5/2
0 1 0 –7/2 1/2 –5/2 *
1 0 0 2 0 1 *� ���

�
�
�
�
�
�
�
�
�
�
�
�
�

So, from the lines (*), we can read off:

(−1
2
1

−2
−1
1

2
3

−1)
−1

= (− 2
5� �

− 2
7� �

2

2
1� �
2
1� �
0

− 2
3� �

− 2
5� �

1).

[For those who know other ways, for large matrices this is much, nay
incredibly, more efficient than Cramer’s Rule or thinggies involving
determinants.]

Note that finding A−1 by this method is already equivalent to
solving Ax = b for lots of b ’s, so solving Ax = b by finding x = A−1b is
not helpful. Unless, that is, we are going to have to solve Ax = b for
lots of b ’s and the same A.

lecture 11

- 5 -

Determinants

Row operations of the form
new row = old row − some multiple of another row

do not change the determinant of a matrix. So we can use the same
‘tableau’ method to get lots of zeros into the matrix before trying to
work out its determinant. Specifically, if you get rid of all the ele-
ments below the leading diagonal, then the determinant is then just
the product of all the elements down the diagonal.

Details left as an exercise!

Iteration

Although Gaussian elimination is the method of choice for many
applications, and [with a few tweaks] it remains the most efficient
general way of finding accurate solutions of matrix equations, it is a
lot of work. [Left as an exercise: How many multiplications in general
will be needed if A is 10000×10000? How long will this take on your
PC?]

There are many cases in practice for which an approximate solu-
tion can be written down ‘easily’, and we can then hope that a simple
iteration will enable us to improve the approximation. In particular,
this will lead us to the Gauss–Jacobi and Gauss–Seidel methods.

lecture 11

