
Linear Algebra
Iterative methods

If we are looking for a simpler way to solve linear equations, then we
can try for an iteration. Take again our example equations:

x + y − z = 4, 2x − y + 3z = −3, −x − 2y + 2z = −7.

We can ‘solve’ these equations for x , y and z respectively:

z = − 2
7

� � + 2
1

� � x + y,
y = 3+2x +3z,
x = 4−y +z,

and we can substitute trial values into the RHS to get new values on
the LHS. Sadly it doesn’t work; at least, not in this case. For exam-
ple, if we start from all zeros, then we get, successively, x = 4, y = 11,
z = 92

1
� � , x = 22

1
� � , y = 36 2

1
� � , z = . . . , and there is no sign of convergence.

Even if you use Aitken’s device, the values are so random that you will
have to be very lucky to get it to work.

Does this idea ever work? Yes! It works if the initial matrix is
diagonally dominant. We’ll make this more precise soon, but for the
time being, it means that the coefficients of the variables we’re iterat-
ing towards are large compared with the others. For example, try
multiplying some of the coefficients in our example by 10:

10x + y − z = 4, 2x − 10y + 3z = −3, −x − 2y + 20z = −7,

so that

z = (−7+x +2y) /20,
y = (3+2x +3z) /10,
x = (4−y +z) /10,

and now starting from zero gives successively x = 0.4, y = 0.38,
z = −0.292, x = 0.3328, y = 0.27896, z = −0.305464, x = 0.3415576,
y = . . . , and we see that the process now seems to be working.

lecture 12

- 2 -

Diagonal domination

The requirement for diagonal domination is that each diagonal ele-
ment [the ‘pivoting’ coefficients for x , y , . . .] must be greater in abso-
lute value than the sum of the absolute values of all the other ele-
ments in the same row of the matrix of the LHS. If so, then when we
solve, we will get equations of the form x = p + qy + rz + st + . . . , with a
guarantee that

�
q

�
+

�
r

�
+

�
s

�
+ . . . < 1. So, whatever the errors in y , z ,

t , . . . , and whatever their signs, we have a guarantee that the result-
ing error in x will be strictly smaller than the largest of the other
errors. As that will happen to every new substitution we make, we
can be sure that after a complete cycle, the largest error has been
made smaller by at least a known ratio. That is, we have a
guaranteed first-order convergence.

Don’t be tempted, ever, to use iterative techniques without this
guarantee. You may expect/hope to be lucky, but you won’t be.

If you just write down a random matrix, then you cannot expect
it to be diagonally dominant. But (a) some numerical techniques gen-
erate large matrices that are, of their nature, DD; and (b) it may
sometimes simply be a matter of re-ordering or otherwise tweaking
the equations, especially if a few elements are a lot larger than the
others. For example,

10x + y − 10z = 4, 20x − y + 30z = −3, −x − 20y + 2z = −7

[another tweak from the original example!] is far from DD, but the
first two equations are almost equations for x and z , so we can elim-
inate x [to get −3y + 50z = −11] and z [to get 50x + 2y = 9], and then
re-order the equations, to get

50x + 2y = 9, −x − 20y + 2z = −7, −3y + 50z = −11,

and now all is well. [We didn’t need to eliminate x and z exactly
between the first two equations, as long as we get one large and one
small coefficient.]

lecture 12

- 3 -

Gauss–Jacobi

In this method, we start from a DD matrix, solve for x , y , etc., as
above, then start from some initial x0, y0 , . . . [often either zero, or else
the result of putting all the x , y , . . . to zero on the RHS], and substi-
tute in to the RHS to get new values x1 , y1 , . . . , and so on. This differs
only slightly from:

Gauss–Seidel

In this method, we proceed as above, but as soon as the new value x1
is available, we use it on the RHS [whereas G–J sticks to the same old
x0 throughout the first cycle], and similar for y , So, by the time we
are nearing the end of the list of equations, we are using mostly the
new values and only a few of the old ones.

This is more convenient for computer programming, as we don’t
need to keep copies of the old values, and might well seem more obvi-
ous. It usually converges slightly more quickly. But it is harder to do
theoretical work with, and in the first cycle or two is slightly less
convenient for hand calculation.

As usual in an iterative process, you do not need to stick to the
rules. G–J and G–S will, for a DD matrix, converge from any starting
values, so you can work to only a few significant figures in the early
stages, or you can ‘guess’ where the values are heading towards.

In the case of a DD matrix, each cycle of the iteration in [say]
G–S will use each element of the matrix once; if the process converges
[to whatever accuracy we need] after, say, 10 cycles, this will have
used each element 10 times. This is little or no better than direct
elimination if the matrix is smaller than 10×10, but is much better if
the matrix is large. So consider G–S (a) if the matrix is DD [or can
easily be made so], and (b) if either the matrix is very large, or else the
matrix is strongly DD [diagonal elements much larger than the oth-
ers] and only limited accuracy is needed.

lecture 12

- 4 -

Ill-conditioned matrices

Consider, for example

(6
1
� �

5
1
� �

7
1
� �

6
1
� �)

−1

= (−210
180

252
−210);

but [using 2sf on the LHS]

(0.17
0.20

0.14
0.17)−1

≈ (189
−156

−222
189);

and even

(0.167
0.200

0.142
0.167)−1

≈ (−135
201

281
−135).

You need to use 5dp in the LHS to get the inverse correct even to the
nearest integer—and this is a diddy 2×2 matrix with simple
coefficients. Things can get rapidly much, much worse with, say, 5×5
matrices.

These ‘ill-conditioned’ matrices are characterised by having
determinants much smaller than you might expect from the sizes of
the elements: here 35

1
� ��� − 36

1
� ��� = 1260

1
��������� ≈ 0.0008, when you might have

expected, say, 0.01 or so.

The problem is severe cancellation errors in the Gaussian elimi-
nation, and the same will happen no matter what you do to invert the
matrix or to solve equations using it. The two rows are almost the
same. This phenomenon is annoyingly common in real life. Some-
times there is no alternative to just doing things to great accuracy
[like using Maple with Digits := 100; or more]. If you are lucky, then
you can step back a little to where the equations came from, and
subtract [or whatever] the equations exactly so as to get a decently-
conditioned version.

lecture 12

- 5 -

Note that ill-conditioning is not the same as A having large or small
elements;

(100
200

200
100), (0.01

0.02
0.02
0.01), even (0.01

200
0.02
100)

are no harder to invert or otherwise use than

(1
2

2
1).

[Except that if the elements are particularly large/small, then for
large matrices you may have to deal with extremely large/small
numbers.]

Various matrix norms [beyond the present scope, in any detail]
may be used to give warning signs of the problem. These include:

� Largest element of A times the largest element of its inverse
numerically much larger than the size of the matrix.
In the example, 0.2×252 ≈ 50 is much greater than 2.

� Some eigenvalues much larger [numerically] than others.
In the example, these are [as it happens] roughly 0.34 and
0.0023.

lecture 12

