
Linear Algebra
Eigenvalues and eigenvectors

This is a large and difficult topic, in general. Some of the methods
rely on lots of theory. We look primarily at a couple of ideas.

Reminders: λ is an eigenvalue of A if there is a non-zero vector x
such that Ax = λx . The point then is that in vector/matrix equations,
the linear operator that corresponds to the matrix A can be replaced,
when operating on eigenvectors, by multiplication by λ [which, on the
whole, we can expect to understand rather better].

The theory tells us that if Ax = λx , then (A − λI )x = 0, and so
A − λI cannot have an inverse, so it is singular, so its determinant is
zero. For 2×2, even 3×3, matrices, this is fine, the equation
det(A − λI ) = 0 is quadratic or cubic, and we [or Maple] can solve for λ.
Don’t be tempted to try this for large matrices; it’s nice in theory, but
it’s a lot of work, and it gives us a high-degree polynomial to solve.
High-degree polynomials are not warm, cuddley things.

If we did get a high-degree polynomial, we would be looking at an
iterative process for solving it; so we equally need an iterative process
for finding eigenvalues and eigenvectors. As always, some iterations
work better than others .. . .
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Preliminaries

Suppose A has eigenvalues λ1 , λ2, λ3 , . . . , λn , with corresponding
eigenvectors x1 , x2 , x3, . . . , xn . [Left as niggle: what if some of the
eigenvalues are ‘repeated’?] We need two basic results:

(a) If Ax = λx , then A2x = λAx = λ2x , and more generally, Akx =
λAk −1x = . . . = λkx . So xi is also an eigenvector of Ak with eigen-
value λ i

k . [Even if k = 0.]

More generally still, xi is also an eigenvector of f (A) with eigen-
value f (λ i ), for ‘reasonable’ functions f .

(b) If B is a non-singular matrix, then B A B −1 B xi = B A I xi =
B Axi = λ i Bxi , so Bxi is an eigenvector of BAB −1 with eigenvec-
tor [still] λ i .

The real point is that if we can find the eigenvalues/vectors of
BAB −1, then the eigenvalues of A are the same, and we can get to
the eigenvectors by pre-multiplying by B −1.

The usual idea is to build up B as a product R1R2R3 . . . of ‘rota-
tion matrices’ or similar, each of which can easily be inverted, in
such a way that BAB −1 gradually gets simpler, to the point
where we can write down its eigenvalues, and, if we need them,
its eigenvectors. For example, if BAB −1 is a diagonal matrix,
then its eigenvectors are the diagonal elements.
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For a 2×2 matrix, such a rotation matrix looks like

R = (sin θ
cosθ

cos θ
− sin θ)

[with inverse obtained by replacing θ by − θ ]. More generally, we
start from an identity matrix, and replace two of the 1’s down the long
diagonal with cos θ , and then replace the two zeros completing the
square with ± sin θ , representing a rotation in the plane of the
corresponding two dimensions by θ . We choose θ so as to create some
zeros in RAR −1; it’s a bit like doing an n -dimensional Rubik’s Cube,
gradually rotating A into a nice ‘shape’.

Another similar method is to use matrices P of form P =
I − 2ww ′ , where w is chosen so that P is easy to invert and also so that
PAP −1 has lots of zeros.

Details are beyond the scope of this module; in real life, you will
use a library procedure rather than write your own. Maple can find
eigenvalues and eigenvectors for you. Most books on numerical
analysis include a chapter on these processes; key names include
Householder, Givens, Hessenberg, Wilkinson.

These are the preferred ways of finding eigenvalues and eigen-
vectors for serious professional work, especially with large matrices.
However, there is also a fairly simple method for finding eigenvalues
and eigenvectors in some cases, which uses the other preliminary
result.
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The Power Method

Suppose we have our eigenvalues ordered such that
�
λ1

�
>

�
λ2

�
>�

λ3
�

> . . . >
�
λn

�
, and suppose we choose any old [non-zero] start vec-

tor, x . Then we can write x as a linear combination of eigenvectors:

x = a1x1 + a2x2 + a3x3 + . . . + an xn .

Now what happens if we multiply by A? Because the xi are eigenvec-
tors, they just get multiplied by λ i :

Ax = a1λ1x1 + a2λ2x2 + . . . + anλn xn .

And if we keep multiplying by A,

Akx = a1λ1
kx1 + a2λ2

kx2 + . . . + anλn
k xn .

Now the clever bit. The RHS is

a1λ1
k(x1 + c2,k x2 + . . . + cn,k xn ),

where ci,k = aiλ i
k /a1λ1

k . Now, we don’t know what ai , λ i , a1 or λ1 are;
but we don’t need to. By assumption,

�
λ1

�
>

�
λ i

�
, so as k gets large,

ci,k → 0 [as long as we don’t quibble about a1 = 0]. So, for large k ,

Akx ≈ a1λ1
kx1 .

We still don’t know a1, but that doesn’t matter as a1x1 is just as good
an eigenvector as x1 ; and we can estimate λ1 by comparing com-
ponents in the resulting vector when we multiply by A again.

[In practice, we scale Akx to have, eg, a first component of 1, then
when we multiply by A, the new first component is an estimate for λ1 .]

lecture 13



- 5 -

Example

Suppose

A = (−1
−5
−4

0
13
14

2
0
0).

Start with x = (1, 1, 1) ′ . Then Ax = (10, 8, 1) ′ , so our first estimate
for λ1 is 10, and for x1 is (1, 0.8, 0.1) ′ [scaling back to a first component
of 1].

Then our next estimate is Ax1 =
(−4 + 14×0.8, −5 + 13×0.8, −1 + 2×0.1) ′ = (7.2, 5.4, −0.8) ′ , so our second
guess is λ1 = 7.2, x1 = (1, 5.4/7.2, −0.8/7.2) ′ = (1, 0.75, −0.11) ′ .

Exercise: Confirm the next approximation, 6.5, and
(1, 0.731, −0.188) ′ . [The exact eigenvalue is 6, with eigenvector
1, 7

5
� � , − 4

1
� � ) ′ .] [Aitken’s process can, as usual, be used to speed up the

iteration.]

What about the other eigenvalues and eigenvectors? Well, by the
[way] above result, the matrix (A − µI)−1 has the same eigenvectors as
A, and eigenvalues 1/(λ i − µ); so we can make any of the eigenvalues
the largest as long as we know roughly where it is [so that we can
make µ an approximation to it]. The bigger the discrepancy between
the biggest and next biggest eigenvalues, the better.

Note that there are problems if two eigenvalues are of equal size;
eg if they are equal, or, more likely for random real matrices, if they
are complex conjugates. Details left as an exercise!
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