Linear Algebra
Eigenvalues and eigenvectors

This is a large and difficult topic, in general. Some of the methods
rely on lots of theory. We look primarily at a couple of ideas.

Reminders: A is an eigenvalue of A if there is a non-zero vector x
such that Ax = Ax. The point then is that in vector/matrix equations,
the linear operator that corresponds to the matrix A can be replaced,
when operating on eigenvectors, by multiplication by A [which, on the
whole, we can expect to understand rather better].

The theory tells us that if Ax = Ax, then (A-Al)x = 0, and so
A —AI cannot have an inverse, so it is singular, so its determinant is
zero. For 2x2, even 3x3, matrices, this is fine, the equation
det(A —-AI) = 0 is quadratic or cubic, and we [or Maple] can solve for A.
Don’t be tempted to try this for large matrices; it’s nice in theory, but
it’s a lot of work, and it gives us a high-degree polynomial to solve.
High-degree polynomials are not warm, cuddley things.

If we did get a high-degree polynomial, we would be looking at an
iterative process for solving it; so we equally need an iterative process
for finding eigenvalues and eigenvectors. As always, some iterations
work better than others ....

lecture 13



Preliminaries
Suppose A has eigenvalues A;, Ay, A3, ..., A,, with corresponding
eigenvectors x;, X9, X3, ..., X,,. [Left as niggle: what if some of the

eigenvalues are ‘repeated’?] We need two basic results:

(a)

(b)

If Ax = Ax, then A%x = AAx = A%x, and more generally, A*x =
A* 1x = . = A*x. So x; is also an eigenvector of A* with eigen-
value A*. [Even if 2 = 0.]

More generally still, x; is also an eigenvector of f(A) with eigen-
value f(A;), for ‘reasonable’ functions f.

If B is a non-singular matrix, then BAB '!Bx;, = BAIx; =
BAx; = A,Bx;, so Bx; is an eigenvector of BAB ™! with eigenvec-
tor [still] A;.

The real point is that if we can find the eigenvalues/vectors of
BAB ™1 then the eigenvalues of A are the same, and we can get to
the eigenvectors by pre-multiplying by B 1.

The usual idea is to build up B as a product R{R5R;5... of ‘rota-
tion matrices’ or similar, each of which can easily be inverted, in
such a way that BAB™! gradually gets simpler, to the point
where we can write down its eigenvalues, and, if we need them,
its eigenvectors. For example, if BAB™! is a diagonal matrix,
then its eigenvectors are the diagonal elements.
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For a 2x2 matrix, such a rotation matrix looks like

R = cosf -—-sinf
sinf cos@

[with inverse obtained by replacing 6 by —-6]. More generally, we
start from an identity matrix, and replace two of the 1’s down the long
diagonal with cos 8, and then replace the two zeros completing the
square with +sin@, representing a rotation in the plane of the
corresponding two dimensions by 8. We choose 8 so as to create some
zeros in RAR™1; it’s a bit like doing an n-dimensional Rubik’s Cube,
gradually rotating A into a nice ‘shape’.

Another similar method is to use matrices P of form P =
I -2ww', where w is chosen so that P is easy to invert and also so that
PAP ! has lots of zeros.

Details are beyond the scope of this module; in real life, you will
use a library procedure rather than write your own. Maple can find
eigenvalues and eigenvectors for you. Most books on numerical
analysis include a chapter on these processes; key names include
Householder, Givens, Hessenberg, Wilkinson.

These are the preferred ways of finding eigenvalues and eigen-
vectors for serious professional work, especially with large matrices.
However, there is also a fairly simple method for finding eigenvalues
and eigenvectors in some cases, which uses the other preliminary
result.
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The Power Method

Suppose we have our eigenvalues ordered such that [A{| > |Ag] >
|[A3| > ... > |A, |, and suppose we choose any old [non-zero] start vec-
tor, x. Then we can write x as a linear combination of eigenvectors:

X =a1xq +a2x2 +a3x3+ +anxn.

Now what happens if we multiply by A? Because the x; are eigenvec-
tors, they just get multiplied by A;:

Ax = a1 x1taghexst ... ta, A, x,.
And if we keep multiplying by A,

Akx = alA]fxl +a2A}§x2+ ce +an/\ﬁxn.
Now the clever bit. The RHS is

a1 A (@) +eg g Xa ... +Cp 1 Xy,
where c; ;, = a;A¥/a A%, Now, we don’t know what a;, A;, a; or A, are;
but we don’t need to. By assumption, |A;| > |A;], so as k& gets large,
c;» — 0 [as long as we don’t quibble about a; = 0]. So, for large &,
Akx = alAI{xl.

We still don’t know a;, but that doesn’t matter as a;x; is just as good
an eigenvector as x;; and we can estimate A; by comparing com-

ponents in the resulting vector when we multiply by A again.

[In practice, we scale A*x to have, eg, a first component of 1, then
when we multiply by A, the new first component is an estimate for A;.]
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Example
Suppose
-4 14 O
A=|-5 13 0].
-1 0 2

Start with x = (1,1,1)'. Then Ax = (10,8,1)', so our first estimate
for A; is 10, and for x; is (1,0.8,0.1)" [scaling back to a first component
of 1].

Then our next estimate is Ax, =
(-4+14x0.8,-5+13x%0.8,-1+2x0.1)" = (7.2,5.4,-0.8)", so our second
guessis Ay = 7.2, x; =(1,5.4/7.2,-0.8/7.2)' =(1,0.75,-0.11)".

Exercise: Confirm the next approximation, 6.5, and
(1,0.731,-0.188)'. [The exact eigenvalue is 6, with eigenvector
1,5, -1)".1 [Aitken’s process can, as usual, be used to speed up the
iteration.]

What about the other eigenvalues and eigenvectors? Well, by the
[way] above result, the matrix (A -ul) ! has the same eigenvectors as
A, and eigenvalues 1/(A; —u); so we can make any of the eigenvalues
the largest as long as we know roughly where it is [so that we can
make [ an approximation to it]. The bigger the discrepancy between
the biggest and next biggest eigenvalues, the better.

Note that there are problems if two eigenvalues are of equal size;

eg if they are equal, or, more likely for random real matrices, if they
are complex conjugates. Details left as an exercise!
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