
Ordinary Differential Equations
Introduction

We look at the ordinary differential equation [ODE]

dx
dy
� ��� = f (x, y)

given some starting value y = y0 when x = x0 .

� Almost everything remains the same if y is a vector, y . So we
can solve simultaneous ODEs, using exactly the same methods,
as long as there is only one independent variable. There can be
problems if the one initial condition is replaced by several condi-
tions on components of y at varying values of x [‘boundary value
problem’ as opposed to ‘initial value problem’].

� We consider partial differential equations [PDEs], where there
are two or more independent variables, later.

� We don’t need f to be linear, simple, whatever. But it must be
‘well-behaved’: continuous, at least. There are also many ways
in which f can be ‘ill-conditioned’, meaning that the solution is
rather delicate.

� Second-order equations can be replaced by a vector of first-order
equations:

dx2
d2y
� ����� = f (x, y,

dx
dy
� ��� )

is equivalent to

dx
dy1
����� = y2;

dx
dy2
����� = f (x, y1 ,y2).

So we don’t need special techniques for these.
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Any ODE gives the slope of the solution at each point [for which f is
defined:

�

x0

y0

Our problem is to ‘join up’ the lines.

[The diagram shows the ODE dy /dx = xy , with solution y = Ae 2
1� � x 2

.]

Euler’s method

This was the first and simplest way proposed to solve ODEs. For a
given, small, step-length h , we have

dx
dy
� ��� ≈

h
y(x +h)−y(x)
��������������������� ,

and so

y(x +h) ≈ y(x) + h
dx
dy
� ��� = y(x) + hf (x,y).

So, we start from x = x0 , y = y0 , and calculate k0 = hf (x0 ,y0),
x1 = x0 + h , y1 ≈ y0 + k0 . Then we move on to x = x1, y = y1, and esti-
mate k1 , x2 , y2 similarly, and keep going until we have built up as
large a table of values of y as we need.
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Example

Consider the case f(x,y) = xy sketched above, with initial condi-
tions y = 1 when x = 0, so that the exact solution is y = e 2

1
� � x2

. We
choose h = 0.1. Then we can build up a table:

x y k
�����������������������������������������

0.0 1.0000 0.0000
0.1 1.0000 0.0100
0.2 1.0100 0.0202
0.3 1.0302 0.0309
0.4 1.0611 0.0424
0.5 1.1036 0.0552
0.6 1.1587 0.0695
0.7 1.2283 0.0860
0.8 1.3142 0.1051
0.9 1.4194 0.1277
1.0 1.5471

[numbers given to 4dp, but worked to full calculator accuracy]. The
last value is not a million miles from e 2

1
� �

≈ 1.6487, but it is not that
marvellous either.

If we try again with h = 0.01, we find y(1) ≈ 1.6378, and with
h = 0.001, we find y(1) ≈ 1.6476. [Computer program rather than
pencil and paper!] Note that using h = 0.001 is a huge amount of
work. So Euler’s method gives us the choice between doing a reason-
able amount of work [comparable with Simpson’s Rule, say] and get-
ting a poor result [error roughly 0.1, when we might have hoped for
three or four sf] or doing a huge amount of work to get a decent
approximation to the right value.

How can we do better? First we need:
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Error analysis

Suppose that y has a Taylor series about x = xn = x0 + nh . That
is,

yn +1 = yn + h
dx
dy
� ��� + 2

1� � h2

dx2
d2y
� ����� + . . . .

Then Euler’s method is giving

yn +1 ≈ yn + hf (xn ,yn ),

and this is wrong for two reasons:

� There is a truncation error, − 2
1� � h2y ′ ′ . Over n strips, this builds

up to − 2
1� � (nh)hy ′ ′ , where nh tells us how far we have gone, and

y ′ ′ is some typical second derivative. So the error is proportional
to h , which is why the results are not marvellous, but can be
made decent by taking very thin strips.

� The value of yn that we are using is not the true value of y(xn ),
but is an approximation. This means that we also depend on
structural features of the ODE. After a bit, we are solving the
ODE as though we had started from slightly the wrong value of
y0 . If we are lucky, this will give us slightly the wrong answer; if
we are unlucky, then the exact solution will depend very strongly
on y0 [a stiff ODE], and our ‘wrong’ answer will rapidly become
very wrong.

We can at least quite easily improve Euler’s method:
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Modified Euler Method

Start as before, k1 = hf (x0 ,y0). So our Euler guess is y1 ≈ y0 + k1 . Now
let k2 = hf (x1 ,y1). Then the change between k1 and k2 is telling us
how rapidly f is changing as we change x . That is, it is giving us an
approximation to the second derivative that appeared in the trunca-
tion error. The average of k1 and k2 will get rid of that approximate
error. In other words, we ‘guess’ y1 by the Euler method, use the
guess to find k2 , and then produce a ‘refined’ guess, y1 ≈ y0 + 2

1
� � (k1 + k2).

If we again take h = 0.1, our Modified Euler Method gives:

x y k1 k2
�����������������������������������������������������������

0.0 1.0000 0.0000 0.0100
0.1 1.0050 0.0101 0.0203
0.2 1.0202 0.0204 0.0312
0.3 1.0460 0.0314 0.0431
0.4 1.0832 0.0433 0.0563
0.5 1.1331 0.0567 0.0714
0.6 1.1971 0.0718 0.0888
0.7 1.2774 0.0894 0.1093
0.8 1.3768 0.1101 0.1338
0.9 1.4988 0.1349 0.1634
1.0 1.6479

[This is my recommended layout!]

As you can see, this is much better! Again, y(1) should be
e 2

1
� �

= 1.6487. . . , so the error is reduced to about 0.001.

You should always use this Modified Euler Method in preference
to the unmodified version. If the extra work bothers you, you can
double the size of h and still get much better results. In serious work,
you should not use the modified scheme either, as there are better
ways still . . . .
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