
Ordinary Differential Equations
Single-step methods for ODEs

[Recall that we are solving
dx
dy
� ��� = f(x,y), subject to an initial condition

y = y0 when x = x0 .]

The Euler and Modified Euler Methods for ODEs are the simplest
examples of single-step methods. These have the pattern:

� Choose a step-length h .

� Starting out from x = x0 , y = y0 at slope f (x0 , y0), ‘explore’ the
interval x0 x x1 = x0 + h to find the estimated increment k in
y over that interval.

� ‘Shift camp’ to a new ‘base’ at x = x1 , y = y1 = y0 + k .

� Repeat the whole process, until x reaches some desired value, to
build up a table of values of y .

Pro: � No special starting procedure needed.
� Can ‘adaptively’ change h as required.
� Easy to program.

Con: � Typically not very efficient, as we are throwing away informa-
tion when we shift camp.
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The most usual single-step methods are known collectively as
Runge–Kutta methods. In these, we obtain successive estimates k1 ,
k2 , . . . of the expected increment in y by going out varying proportions
of the way between x0 and x1 , in directions that depend on the earlier
parts of the exploration, and use these to estimate some average k .
The [many] parameters in this process that are at our disposal are
chosen so as to maximise the number of terms of agreement between
our estimate and the Taylor series of y about x = x0 .

The Runge–Kutta method is:

k1 = hf (x0 , y0);
k2 = hf (x0 + 2

1
� � h, y0 + 2

1
� � k1);

k3 = hf (x0 + 2
1

� � h, y0 + 2
1

� � k2);
k4 = hf (x0 + h, y0 + k3);

k = 6
1

� � (k1 + 2k2 + 2k3 + k4).

[Compare Simpson’s Rule.] More generally, k4, for example, would
depend directly on k1 and k2 as well as on k3 , and how much we
increment x would also vary more ‘interestingly’.

There are many, many variants, especially with more or fewer
evaluations of f per step [which is a measure of the work done]. Left
for anyone interested to look up. Modified Euler is a particularly
simple RK method. You will also see especially a variant called
Kutta–Merson, and, as used in Maple, Runge–Kutta–Fehlberg, which
trades off an extra evaluation of f for also getting an estimate of the
error.

A different simple way to estimate the error is to repeat the
calculation of two RK steps using one step but with h doubled. This
uses therefore 11 evaluations per double step instead of 8, but it gives
a chance for Richardson extrapolation, and if you find the error is
getting too small or too large, then you can double or halve h , and
some of the work is already done.
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Multi-step methods

The basic idea here is that having built up a table of values of y and f
for different values of x , we can interpolate to find f as a function of x
between xn and xn +1 , and integrate that to get the next y value.

Pro: � Makes efficient use of f , so is fast and accurate.

Con: � Needs several starting values, so we have to use some other
method [such as RK] at first.
� Which is not necessarily that hard, for example if it is easy to
get a Taylor series expansion of y from the differential equation
near x = x0.
� But it does make these methods somewhat harder to program
up.
� Hard[er] to change h .

A typical example is the 3-point Adams–Bashforth formula, in
which we use the most recent three values of f to estimate f as a
quadratic function of x , and integrate that:

y1 = y0 +
12
h
� ��� (23f0 − 16f−1 + 5f−2).

[Details left as an exercise.]

Compare Simpson’s Rule. In that we would be using the qua-
dratic to integrate between x−2 and x0 , which is relatively nice. here
we are using it to extrapolate to ‘new’ values of x and integrate
between x0 and x1 , which is relatively nasty.
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So Adams–Bashforth is not usually used on its own, but as part of a
predictor-corrector process. We use AB to produce an estimate, the
prediction, y1

* , of y1, and use this estimate in a slightly different pro-
cess, called Adams–Moulton. This uses the old values of f and the
new estimated f1

* to produce a better interpolated polynomial, which
we integrate up to get a corrected value of y1 and so of f1 . Specifically,
the 4-point Adams–Moulton formula is

y1 = y0 +
24
h
� ��� (9f1

* + 19f0 − 5f−1 + f−2).

where f1
* = f (x1 , y1

* ). [Details again left as an exercise.]

In principle, if AB and AM differ too much, we could use the first
AM value as predictor in a second round of AM; but if this happens, it
is usually a sign that h is too large. In AM, the discrepancy between
predictor and corrector can be used to give an error estimate, or, as
with RK, we can re-do the calculation with a different h .

As with RK methods, there are many variations. In principle, we
should use difference table methods to determine what degree of poly-
nomial [if any] should be used in the AB/AM interpolations, but it is
more usual in practice to just choose a particular number of ‘points’,
as above.

Also as with RK, Euler and Modified Euler are again just the
simplest possible multi-step methods, the 1-point AB predictor with a
2-point AM corrector.
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How well do these methods work in practice? The table shows RK and
AB/AM as described above on our standard example, f (x,y) = xy , start-
ing with y = 1 when x = 0, and using h = 0.1.

To start AB off, we use the ODE itself to give a Taylor series for
f : As f = xy , f ′ = xy ′ + y = xf + y , so f ′ ′ = xf ′ + f + y ′ = xf ′ + 2f , and
then f ′ ′ ′ = xf ′ ′ + 3f ′ , f (4) = xf ′ ′ ′ + 4f ′ ′ , f (5) = xf (4) + 5f ′ ′ ′ , and so on.
Substituting x = 0, y = 1, we find successively that f = 0, f ′ = 1,
f ′ ′ = 0, f ′ ′ ′ = 3, f (4) = 0 and f (5) = 15, so

f (x) = x + 2
1
� � x3 + 8

1
� � x5 + . . . ; y(x) = 1 + 2

1
� � x2 + 8

1
� � x4 + 48

1
� ��� x6 + . . . .

Substituting x = 0.1, we estimate f ( ± 0.1) ≈ ± 0.10050125, y( ± 0.1) ≈
1.0050125. This gives us three values of f and y to start us off.

x RK AB/AM
�����������������������������������������������������������

0.0 1.00000000 1.00000000
0.1 1.00501252 1.00501252
0.2 1.02020134 1.02020077
0.3 1.04602786 1.04602664
0.4 1.08328706 1.08328503
0.5 1.13314845 1.13314526
0.6 1.19721735 1.19721245
0.7 1.27762128 1.27761376
0.8 1.37712769 1.37711613
0.9 1.49930236 1.49928456
1.0 1.64872101 1.64869362

Again, the final values should be compared with e 2
1
� �

≈ 1.64872127.
Runge–Kutta has done extremely well. [But note that it has done
considerably more work, evaluating f four times per step.] Adams–
Bashforth has not done quite so well, though much better than
Modified Euler [for the same two evaluations of f per step], and note
that we could move to a much more accurate 4- or 5-point formula at
very little cost [and the same number of function evaluations].
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