
Ordinary Differential Equations
Stability and Stiffness

There are basically three things that can go wrong when we try to

solve an ODE
dx
dy
� ��� = f(x,y) numerically:

� Either f or y may be ill-behaved. This may be hard to spot, as it
may [well] depend on the initial conditions. The remedy is as for
quadrature; change variables, or use analytic approximations to
the solution near singularities. More ‘interesting’ are the other
possibilities:

� The chosen solution method may interact badly with the ODE.
This is a stability problem, and there are several categories. We
look in particular at partial, weak and strong stability.

� The desired solution may be difficult to find because of the nature
of the family of solutions. This is a stiffness problem. There is
normally little that can be done for direct solution. Sometimes it
helps to run the solution ‘backwards’; compare the In problem
that we looked at in lecture 1.

lecture 16



- 2 -

Partial [in]stability

A partial instability is caused by taking too large a step-length, h .
For example, suppose we try to solve

dx
dy� ��� = λy ; y = 1 when x = 0

by using the Modified Euler Method with step-length h = 0.1. The
exact solution is y = eλx. The MEM tells us that y1 = 1 + 0.1λ + 0.005λ2

[check!], and y(1) = y10 = (1 + 0.1λ + 0.005λ2)10, when it should be eλ.
The following table shows, for various values of λ, how accurate MEM
is:

λ eλ MEM value error(%)���������������������������������������������������������������������������������������
0 1.0000 1.0000 0
0.5 1.6487 1.6483 –0.02
1 2.7183 2.7141 –0.2
2 7.3891 7.3046 –1.1
5 148.41 128.39 –13
10 22026 9536.7 –57
25 7e10 1.6e8 –99.8
–0.5 0.6065 0.6067 0.02
–1 0.3679 0.3685 0.2
–2 0.1353 0.1374 1.6
–5 0.0067 0.0091 34
–10 0.000045 0.00098 2000
–25 1.4e–11 128 9e14

Note that for
�
λ
�

< 2, the results are reasonable; but for larger
�
λ
�

the
results get steadily worse. The reason is simple; the truncation error
in MEM for finding y(1) is − 6

1� � h2y ′ ′ ′ [exercise!], so will be relatively
large unless h2 is small compared with a typical third derivative, here
λ3. Note that it doesn’t matter much whether λ is positive or negative;
a rapidly-decaying exponential is as hard to follow as a rapidly-
growing one. The cure is to take h smaller, until the error is ‘small
enough’.

lecture 16



- 3 -

Much the same will happen to all Runge–Kutta and Adams–
Bashforth methods; a higher power of h may be involved, but equally
a higher derivative of y . Transient behaviour of an ODE may force
you to use a much smaller step-length than you might expect, even if
transient solutions rapidly become negligible.

Strong and weak stability

Details beyond the scope of this module. The idea is that any method
for solving ODEs has ‘spurious’ solutions. When we build up a table of
results, the values in that table are subject to the usual truncation
errors and rounding errors. The effect is that we have added in to our
solution a small [we hope!] error function, which then participates in
the solution for the next step. What happens to this error function?

We cannot normally expect it to go away. [Imagine solving the
simplest possible ODE, dy /dx = 0, solution y = constant. If we get
one of the y values wrong, then the constant is just as wrong, and the
error will persist.] In general, if we have a series of ‘wrong’ y values,
then our process [such as RK or AB] will continues that series with
further ‘wrong’ values that will take on a life of their own, depending
not so much on f [which is just zero in this very simple case] as on
previous y ’s. If the only life that persists is either the constant error
or a decaying error, then the method is strongly stable. If there are
other error terms that do not decay, but do not grow either, then the
method is weakly stable. If there are growing error terms, then the
method is unstable.

Unstable methods are Bad News. Basically, the instability is
structural, within the method, not broadly to do with the ODE itself;
but it is possible for ‘resonance’ to afflict any method, so there are no
cast-iron guarantees. Taking shorter step lengths just means you
take more steps, giving the errors more chance to grow. So the only
solution is to change methods. No-one voluntarily uses unstable
methods. Luckily, the usual RK/AB methods are strongly stable
except in bizarre cases.

lecture 16



- 4 -

Stiffness

For example, let us tweak our usual ODE:

dx
dy
� ��� = 10xy − (10x + 1)e−x; y = 1 when x = 0,

of which the solution is y = e−x. What happens if we try [eg]
Runge–Kutta on this equation? Well, with h = 0.1, we find y(1) ≈
0.36732, not bad compared with e−1 ≈ 0.36788. But we find
y(2) ≈ −1530.3, which is rather a long way from e−2 ≈ 0.13534. How
about h = 0.01? That gives y(2) ≈ −0.08045; still not terribly good!
This is a form of partial instability; by the time we take h = 0.002, we
find y(2) ≈ 0.13500, and we are doing better.

But why are we having to do such an incredible amount of work?
The general solution of the given ODE is y = e−x + Ae5x2

. We are look-
ing for the solution with A = 0; but the slightest rounding or trunca-
tion error, and we have added in an exponentially-growing solution.
For x = 1, e5 ≈ 150, so we can get reasonable accuracy provided A is
much less than [say] 10−6. For x = 2, e20 ≈ 5×108, so we need A to be
something like 10−12 to get even 3dp accuracy, and we are really
straining calculator accuracy. For x = 3, e45 ≈ 3×1019, and you will
need 24sf accuracy in both rounding and truncation errors for reason-
able accuracy in the result; you won’t get that from a calculator, and
nor from a computer program unless you use high precision arithmetic
together with a highly accurate method.

So the problem really is that y(3), for example, is depending
amazingly critically on the value of y(0); no numerical process whatso-
ever is going to find that easy. [Computer demos of this ‘instability’
are quite pretty.]

Note: (a) Solutions that look like [for example] e−5x2

are just as
bad numerically, as discussed previously, even though the true solu-
tion now depends only amazingly weakly on A and hence on y(0). (b) If
you are solving simultaneous ODEs, then ill-conditioning, as dis-
cussed for [even] 2×2 matrices, can lead to unexpectedly large/small
eigenvalues, which can give the same sorts of critical behaviour, but in
much less obvious form.

lecture 16


