
Ordinary Differential Equations
Boundary Value Problems

Dynamics problems are usually ‘initial value’ problems: we start the
system off from this position with that velocity [often zero]. More
static problems are often ‘boundary value’ problems: you know what is
happening ‘at the outside’, and need to know what is happening on the
inside.

BVPs can occur as part of the solution of partial differential
equations [PDEs]; we look at these later. Here we look at them in
their own right.

Example: Suppose

dx2
d2y
� ����� = y,

given that y = 1 when x = 0 and when x = 1. [So we know that the
general solution is

y = Aex + Be−x,

so that the boundary conditions give

A + B = 1, Ae + B /e = 1,

which we can solve for A and B to find the particular solution, and so
the value of y for any given value of x .]

As previously, we can re-write the equation as a pair of first-
order equations:

dx
dy
� ��� = z ;

dx
dz
� ��� = y.

lecture 17



- 2 -

Now, if we had initial values for y and z , we could solve numerically,
e.g. by using Runge–Kutta. But we only have the initial value for y .
So we guess an initial value for z , say z = 0. Now we can solve. There
are no new principles, and the exact solution is

y1 = 2
1

� � ex + 2
1

� � e−x; z1 = 2
1

� � ex − 2
1

� � e−x.

Unsurprisingly, this gives us the wrong value for y when x = 1; in
fact, y1(1) ≈ 1.543 instead of 1. So we try again with a different initial
value of z . Any other value would do [say z = 1]; as our value of y(1)
is too large, we should probably try a smaller value of z , say z = −1.
Again, there are no new principles, and the exact solution is [even
simpler]

y2 = e−x; z2 = − e−x,

again giving the wrong value when x = 1: y2(1) ≈ 0.368.

In this case, the given ODE was linear, so we can interpolate
linearly between these two solutions: the general solution is

y(x) = α ×y1(x) + (1 − α)×y2(x)

and we find α by taking x = 1:

1 ≈ α ×1.543 + (1 − α)×0.368.

[Of course, in a real-life problem, we would find y1 and y2 entirely
numerically, and build up tables of the values of y and z .]

What if the ODE is not linear? In this case, we cannot simply
interpolate linearly between two solutions, we have to choose yet
another initial value for z , solve, and hope to get closer to the right
value for y when x = 1. In fact, effectively the value of y(1) is a
[rather difficult] function of the initial z , and we are trying to solve
the equation [in this case] y(1) = 1 for that initial z . So we have, in
general, to use the methods developed for solving equations.

lecture 17



- 3 -

Note that Newton–Raphson is not so easy, as we do not know the
derivative of y(1) with respect to the initial z . Note also that simply to
work out y(1) involves solving the ODE, so we do not want to do that
too often. There is an efficient variation of NR called the ‘secant’
method, which essentially means replacing the derivative in NR by an
estimate of it from the most recent two function values. But whatever
you do, we have the problems discussed earlier in the module: ‘safe’
methods are inefficient [which really matters here], and efficient
methods can sometimes blow up; compounded with that are all the
usual potential problems of stability and stiffness when solving the
ODE. BVPs are often rather nasty.

The methods just discussed are generically called ‘shooting’

methods. Baasically, given an initial value for y but not for
dx
dy
� ��� , we

guess the initial
dx
dy
� ��� and ‘shoot’ at the other boundary. If we

‘overshoot’ [our final value is too large], then we ‘lower our aim’,

reduce
dx
dy
� ��� and try again, and similarly if we ‘undershoot’, until even-

tually we ‘hit the target’. It helps if, as is quite often the case in
practical problems, we have a reasonably good idea of the initial
aim—for example, in cases where the problem is a small perturbation
from a previously solved case.

Until fairly modern times, if a BVP could not be solved analyti-
cally, shooting was the only practicable numeric solution. But now
that we can solve large systems of linear equations on the computer, a
different approach is possible.

lecture 17



- 4 -

Finite-difference methods for BVPs

The basic idea is to replace the derivatives in the ODE by differences.
Suppose, for definiteness, we use a ‘strip width’ of 0.1 in our previous
example. Then we have 11 x -values, xi = 0.1× i for 0 i 10, and
correspondingly 11 y -values, of which y0 and y10 are given by the
boundary values, but the other yi are unknown. So we need 9 equa-
tions in these 9 unknowns. But we can approximate:

y ′ ′(xi ) ≈ (y ′ (xi + 2
1

� �

) − y ′ (xi + 2
1

� �

)) /h ≈ (yi +1 − 2yi + yi −1) /h2

[with similar results for other derivatives if we needed them], where h
is the strip-width, here 0.1. So the ODE y ′ ′ = f (x,y) becomes

yi +1 − 2yi + yi −1 ≈ h2f (xi ,yi ),

or, in our example, y ′ ′ = y ,

yi +1 − 2yi + yi −1 ≈ 0.01yi ,

for i = 1, 2, . . . , 9. Just what we needed, 9 equations for the 9
unknowns.

Note that numerical differentiation is normally ‘difficult’ because
of the cancellation error, as discussed previously. But in this
case we are not using the yi to estimate derivatives of y ; rather,
the ODE tells us the derivatives, and we are using these to esti-
mate the yi . So this process works quite well in practice.

In the present case, as the equations are linear, we have a 9×9
matrix to invert to solve the equations exactly. More generally, the
equations would be non-linear, but this will occur on the right-hand
side only, and as these are all small because of the factor h2, an
iteration usually works well. That is, we guess the yi , plug these into
the RHS, use these to solve for [better] yi , and keep going.

lecture 17



- 5 -

For our example, we can solve using Maple. We have to invert a
9×9 matrix, most of whose rows look like

.. . 0 0 1 −2 1 0 0 .. . ,

and multiply that by the vector of [guessed] right-hand-sides to pro-
duce the better values of yi for the next iteration. The results are
shown by the following table:

xi yi [FD solution] yi [exact solution]
�������������������������������������������������������������������������������

0.0 1.00000 1.00000
0.1 0.95875 0.95872
0.2 0.92708 0.92703
0.3 0.90469 0.90461
0.4 0.89134 0.89126
0.5 0.88690 0.88682
0.6 0.89134 0.89126
0.7 0.90469 0.90461
0.8 0.92708 0.92703
0.9 0.95875 0.95872
1.0 1.00000 1.00000

It doesn’t always work this well!

If we need to improve the accuracy, we can (a) reduce the strip
width, bearing in mind that [eg] 100×100 matrices can be inverted
reasonably routinely, and (b) use better difference formulas for the
derivatives [but this usually needs some special treatment at the
boundaries, else the formula can use y -values outside the boundaries].

Note that in many physical problems, the ODE was derived from
a ‘finite-difference’ approximation, e.g. considering heat flow between
two x -values separated by a distance h and letting h → 0. So there is
often a sense in which this process for solving BVPs is closer to the
original problem than the ODE is; which may be one reason why it
often works so well.

lecture 17


