
Partial Differential Equations
Introduction

Partial differential equations [PDEs] arise when there are two or more
independent variables in a differential equation. As with ODEs, there
is a very broad grouping into initial value problems [‘This is the start-
ing position, how does it evolve?’] and boundary value problems [‘This
is what is happening at the outside, what is happening in the mid-
dle?’]. Also as with ODEs, there is a much better prospect of making
progress with linear PDEs than with more general non-linear PDEs.
And also as with ODEs, there are problems of stability and stiffness.
In other words, we get all the problems/notions/ideas of ODEs plus the
new ones caused by the extra variable[s]—meaning that boundary
points become boundary lines or surfaces, arbitrary constants become
arbitrary functions, and so on, but also that there are extra stability
problems caused by potential interference between the variables.

Most PDEs arising in practice are of the second order. The
simplest/commonest examples are Laplace’s equation:

∇2φ =
∂x2
∂2φ
����� +

∂y2
∂2φ
����� = 0

[or Poisson’s equation, similar but with non-zero RHS], the diffusion
equation, or heat equation:

∂t
∂φ
� ��� = k

∂x2
∂2φ
����� ,

and the wave equation:

∂t2
∂2φ
����� = c2

∂x2
∂2φ
����� .

We take these in turn, as they present different problems for numeri-
cal solution.
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Elliptic† PDEs—Laplace’s Equation

Laplace’s equation, ∇2φ = 0, is usually presented as a BVP.
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The assumption is that the equation holds over some region S, with
φ(x,y) prescribed on the boundary C. [The equation could, for example,
describe—among many other applications—the displacement of a
membrane, such as a drum-skin, which is in equilibrium and clamped
in position round the edge.]

Following our procedure with BVPs in ODEs, we can replace the
PDE by finite-difference equations. We choose some strip width h for
the x -values, and k for the y -values. So we divide S into little rectan-
gles, bordered by lines x = xi running vertically and yj running hor-
izontally. We assume that where these lines meet, we can find an
approximate value φ(xi ,yj ) ≈ ui, j , from which we can build up a matrix
of values, and we need one equation for each combination of i and j .

__________________________

† Elliptic, parabolic, hyperbolic PDEs—classification discussed later.
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This comes from essentially the same equation as we used for ODEs:

∂x2
∂2φ
����� ≈ (ui −1, j − 2ui, j + ui +1, j ) /h2,

and correspondingly for y ,

∂y2
∂2φ
����� ≈ (ui, j −1 − 2ui, j + ui, j +1) /k2.

So Laplace’s equation becomes

(ui −1, j − 2ui, j + ui +1, j ) /h2 + (ui,j −1 − 2ui, j + ui, j +1) /k2 ≈ 0,

ui, j ≈
2h2 + 2k2

k2
� ��������������� (ui −1, j + ui +1, j ) +

2h2 + 2k2
h2

� ��������������� (ui, j −1 + ui, j +1),

relating the u -values marked by dots in the diagram. Note that ui, j is
a weighted average of the four surrounding values; in the common
case where h = k , it is the simple average.

At or very near the boundary, C, this simple relationship breaks
down if C is at all irregular, and some tweaking is needed. If C is
rectangular, then, as with ODEs, the effect is that some of the u -
values are already known.

� Note that we now get large numbers of equations even for quite
modest numbers of strips—100 or so for about 10 strips in each direc-
tion, 1000 if we use the same approach in three dimensions, 106 if we
have a six-dimensional problem [perhaps in phase space]—so this is
definitely a problem for the computer rather than pencil-and-paper
except for toy examples.

� No particularly new principles if we tackle Poisson’s equation,
∇2φ = f (x,y,φ); there will be a non-zero, and perhaps non-linear, term
on the RHS of the equations, so iteration may be needed. Also no new
principles if we change, say, to polar co-ordinates.
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Toy Example

Suppose S is the square 0 x,y 1, and that on C, φ = x2 on y = 0,
φ = y2 on x = 0, φ = 1 on x,y = 1. Choose h = k = 0.25, so there are
nine interior points. By symmetry, ui, j = uj,i , so we only need six
equations, and also ui, j is known if either of i or j is 0 or 4. So we get:

u1,1 ≈ 4
1
� � (u0,1 + u2,1 + u1,0 + u1,2) = 2

1
� � ( 16

1
� ��� + u1,2);

u1,2 = u2,1 ≈ 4
1
� � (u0,2 + u2,2 + u1,1 + u1,3) = 4

1
� � ( 4

1
� � + u2,2 + u1,1 + u1,3);

u1,3 = u3,1 ≈ 4
1
� � (u0,3 + u2,3 + u1,2 + u1,4) = 4

1
� � ( 16

25
� ��� + u2,3 + u1,2);

u2,2 ≈ 4
1
� � (u1,2 + u3,2 + u2,1 + u2,3) = 2

1
� � (u1,2 + u2,3);

u2,3 = u3,2 ≈ 4
1
� � (u1,3 + u3,3 + u2,2 + u2,4) = 4

1
� � (1 + u1,3 + u3,3 + u2,2);

u3,3 ≈ 4
1
� � (u2,3 + u4,3 + u3,2 + u3,4) = 2

1
� � (1 + u2,3).

We can use Maple to solve these:

u1,1 ≈ 0.265, u1,2 = u2,1 ≈ 0.466, u1,3 = u3,1 ≈ 0.711,

u2,2 ≈ 0.641, u2,3 = u3,2 ≈ 0.815, u3,3 ≈ 0.907.

The values for the exact solution of the PDE would have been [to 3sf]

u1,1 ≈ 0.271, u1,2 = u2,1 ≈ 0.473, u1,3 = u3,1 ≈ 0.716,

u2,2 ≈ 0.647, u2,3 = u3,2 ≈ 0.819, u3,3 ≈ 0.910.

Beyond the scope of this module, the truncation error is of order
h2 + k2 and is also proportional to a rather messy function of the fourth
partial derivatives of φ [so in fact we get exact answers if the true
solution is ‘only’ cubic in x and y ].
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