
Example 4 [continued]

Here are my calculated results for I15 [you may get different
numbers!]:

I0 = 1 − 1/e = 0.632120558
I1 = 1 − I0 0.367879441
I2 = 1 − 2I1 0.264241117
I3 = 1 − 3I2 0.207276647
I4 = 0.170893411
I5 = 0.14553294
I6 = 0.12680237
I7 = 0.112383496
I8 = 0.100932025
I9 = 0.091611769
I10 = 0.083882304
I11 = 0.077294656
I12 = 0.072464148
I13 = 0.057966336
I14 = 0.188471296
I15 = − 1.82706944
I16 = 30.233. . .
I17 = − 512.9.. .

Oops! Clearly something is going wrong. [Is it clear? Note that
as the integrand runs up from 0 when x = 0 to 1 when x = 1, the
area under the graph lies between 0 and 1, so 0 < In < 1 for all
n 0.] Question: Did you spot that I15 was ‘wrong’ by your cal-
culator? And: Would you have spotted anything wrong with, say,
I12?
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What has gone wrong?

Any error, even in the 10th or 12th decimal place, is multiplied by 1,
then by 2, then by 3, . . . , then by 15, so altogether by 15! ≈ 1.3×1012.

The true value is swamped by the error, even though no large
numbers have been used, and only a few operations. A computer
can—very easily!—go this wrong in well under a microsecond.

Solutions:

(a) Use Maple with huge precision. Ugh. Exercise: Use Maple to get
the exact answer. Use evalf to print it out, and note that the
answer is wrong unless you use more decimal places than the
default.

(b) Use a different method: (i) power series expansion of the
integrand [works well, and is in the end quite similar to (c)
below]; (ii) Simpson’s Rule [works, but not well].

(c) Make the errors work for you. If we jiggle with the formula, we
get In −1 = (1 − In ) /n :

I20 ≈ 0 1.0
I19 ≈ 0.05 0.05
I18 ≈ 0.05 0.0026
I17 ≈ 0.052777777 0.00015
I16 ≈ 0.055718954 8×10−6

I15 ≈ 0.059017565 5×10−7

[The RH column is a bound on the error, divided each time by n
from the line above.]

Actually, I15 ≈ 0.059017540.
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Errors

There are three main sources:

(a) Rounding errors

� Your calculator/computer is finite. Eg it may show/use
π = 3.141592654, when actually π = 3.1415926535897.. . .
� Numbers used should ideally be correct to last place shown.
� Depends on computer/calculator, ‘guard digits’, size of number,
phase of moon, . . . .
� NB binary computers do not hold decimals exactly, in general.

(b) Truncation errors

� We have to stop ‘infinite’ process after a finite time, eg
sin x ≈ x − 6

1� � x3 + 120
1������� x5 − 5040

1��������� x7 + . . . .
� Need help from ‘pure maths’ theory, usually.

(c) Blunders

� Program bugs, misunderstandings.
� Mis-typing of data.
� To cure these, need checks, self-correction, etc.
� [So we prefer methods in which blunders are, somehow, made
obvious to those in which a number just drops out at the end and
we have no way of knowing whether it is right or wrong.]
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Errors are:

(a) Absolute

� think: ‘number of decimal places’ [dp].

� π = 3.141593 to 6 dp

As, in fact, π = 3.14159265. . . , the error [approximate value
minus exact value] is 0.00000035.. . , equivalently, the correction
[what you have to add to the approximate value to get the exact]
is −0.00000035. . . . We rarely know error or correction very accu-
rately; but if we are quoting 6dp, we should have reason to
believe that it lies between ± 2

1� � ×10−6.

(b) Relative

� think: ‘number of significant figures’ [sf].

� π = 3.141593 to 7 sf.

relative error =
exact

approximate − exact
������������������������������������� .

Again, the actual error is not usually known very accurately, but
when you give answers to [say] 7sf, you should have reason to
suppose that the 7th digit is correct.

[Some books have slightly different definitions of error and
correction. If the differences matter, you are already in trouble.]
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If you add or subtract two numbers, then their absolute errors are also
added or subtracted. If you add a million numbers, each known to
10dp, then their sum is only guaranteed to 4dp. You may be luckier—
but bad luck is not unknown.

If you multiply or divide numbers, then the absolute errors are scaled;
if we know π = 3.141593 to 6dp, then we know 100×π = 314.1593 to
4dp or 0.001×π = 0.003141593 to 9dp.

If we average our million numbers, by adding them up and dividing by
a million, then we lose 6dp in the addition, but get them back with the
division even if we are unlucky; with luck, we do better. Averaging is
a number-friendly process.

If you multiply or divide numbers, then their relative errors are
approximately added or subtracted. There is no easy rule for relative
errors when you add or subtract numbers.

For ‘normal’ numbers, it doesn’t usually much matter whether you
think about dp or sf. But in science and engineering, we often deal
with very large or very small numbers. In such cases, the number of
dp is often irrelevant, and what matters is the number of sf in our
answers.
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Cancellation error

There is one special case where relative errors are very important
when you add or subtract numbers. If the answer is much smaller
than the numbers we started with, then significant figures have been
lost. This is called cancellation error.

Example: 1000001 has 7sf and 999999 has 6sf; but
1000001−999999=2 has only 1sf. We have lost 5sf.

[See also example 2 from the first lecture.]

Example: In maths, we are taught that

f ′(x) =
h → 0
lim

h
f (x +h)− f(x)
��������������������� .

But if we try to use that formula [without the limit], then:

(a) with h large, say h = 0.1, there is a large truncation error, and
the results are not very accurate.

(b) with h small, say h = 0.0000000001, then f (x +h) and f (x) will be
very close together, so we get cancellation error, and so a large
relative error—the numerator is known to only very few sf—
though only a small absolute error. Then we divide by h , which
scales the absolute error, so that we get a large absolute error as
well, and the result is worthless. Ugh!
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