Hyperbolic PDEs—the Wave Equation

The wave equation usually has ‘boundary value’ conditions in x and
‘initial value’ conditions in ¢. The extra twist is that, as this is a
second-order equation in ¢, we are usually given ¢ and 0¢/0t at [eg]
t = 0. If we, as usual, replace the original equation

0% _ ,0%

__C ,
ot2 dx>

by a difference equation for the approximation u; ; at the i-th x-strip
and j-th ¢-strip, we have

Ujje1 204 i+ U; 5 ~ 2 Uj—1;~2U; ;%Y U4

k? h? ’

where A and k£ are the usual strip widths, and so
ui,j+1 = 2ui,j - ui,j_l +(kc/h)2(ui_1’j —Zui,j +ui+1’j).

Assuming that we start at ¢t = 0, j = 0, this equation enables us to
advance to the next time step provided that j > 1.

Unfortunately, we can’t immediately take the very first step,
since that describes u;; in terms of the values of u at time 0 and
[sadly!] u; _; at time —k. Luckily, it isn’t too difficult to get a decent
approximation to u; 1, since we know 0¢/0t at ¢t = 0. By the Maclaurin
expansion,

_~ . 1 2.-
Ui = u;otki; o+ sk,

and # is known from the initial conditions, and @ = c?u'' from the
wave equation, where u'' is known if we have an explicit differenti-
able function for the initial © [and can otherwise be replaced by the
usual approximation from the initial u; y]. We could take the expan-
sion further, but this is usually overkill, given the accuracy of the rest
of the process.

lecture 20



Example
Let us take a very simple case: ¢ = 1, @x,0) = sin7m, @x,0) = 0,
@0,t) = (1,t) = 0. [Of course, in really interesting problems, c is vari-
able.] Then the exact solution is
@lx,t) = sin 7 cos 7tt.

Numerically, we therefore take

wio = SinAM; u;y = u;0- sk°°sinh.
Then we can use the above scheme to find u; 3 and so on. For many

reasonable values of A and %, this works surprisingly well: the table
shows the maximum error [for any u; ;] if we integrate out to ¢ = 1.

h k maximum error
0.1 0.1 0.00131
0.1 0.01 0.00730
0.1 0.001 0.00747
0.01 0.01 0.00000129
But:
0.01 0.1 8.48x10°
0.01 0.02 1.05x10%!

As with the heat/diffusion equation, there is a partial instability if we
take k too large. Essentially, this happens if [in general] kc > A, that
is, if the distance travelled by ‘sound’ in one time-step is greater than
the space-step. The numerical analysis is bounded by the speed of
‘sound’ Note that once stability is achieved, nothing seems to be
gained by taking smaller time steps. [Detailed error analysis beyond
the present scope.] As usual, it is important that A~ and 2 be small
enough that any important features in the initial problem feature
adequately in the discretisation.

lecture 20



-3 -

Note that we do not need to invert any matrices or solve any
complicated linear equations for this solution. We need to be able to
store the two most recent time steps in order to generate the next; but
solving two- or even three-dimensional problems is not that hard, as
[eg] 100x100%x100 space steps will need the storage of [only!] two mil-
lion u values at a time.

So hyperbolic PDEs are usually quite easy, as long as the space-
and time-steps are carefully chosen; and as long as the boundary
conditions are reasonable [such as: vibrating strings, membranes,
water waves, etc., provided that the boundary is not ‘moving’]. Unfor-
tunately, many problems in real life have the boundaries either
vibrating [so that, in the current example, @0,t) and/or ¢(1,¢) depends
on t] or moving [so that ¢ is specified at changing values of x]. If the
vibration/motion is [significantly] slower than the ‘speed of sound’,
then there will not usually be any problems. But many real applica-
tions involve either forced motion [eg, mechanical vibrations driving
musical instruments] or rapid motion [speedboats, jet planes] produc-
ing either resonance or shockwaves. These are numerically a serious
mess; avoid! You really have to get analytic approximations to what
is going on, and hope that the numerical work can be confined to other
parts of the problem.

lecture 20



Finite-Element methods for PDEs
[Introduced here so that you know the term!]

One of the big problems with real-life PDEs is the nature of the
boundary. Real machines, buildings, capacitors, efc. are not just rec-
tangles, bars, cubes, but include complicated shapes, internal corners,
holes and so on. Most of the simple PDEs have somewhat analytic
solutions, like the f(x+ct)+g(x—ct) solutions of the wave equation,
meaning that the solution can often be expressed formally as [for
example] a Fourier series, or similar.

The idea in finite-element methods is to divide the problem up
into several/many components [similar to a triangulation of a complex
surface], each of which can be approximated by a simple shape [such
as a triangle]. Then we assume that each component has its own
‘solution’, given, for example, by the first few terms of a Fourier series
[in two or three dimensions] or a Taylor series. For elements ‘on the
edge’, there will be formal conditions on those terms given by the
actual boundary conditions. For internal boundaries, there will be
‘match-up’ conditions, by which we require that the solution on one
component turns smoothly into the solution on the next; there are
devices such as ‘splines’ to help with this.

The next step is usually to try to minimise the total error. The
PDE will not usually be exactly satisfied by the truncated series, so at
each point there will be a discrepancy. Integrate the square [or
modulus] of that over the area/volume concerned, and minimise the
result as a function of the coefficients in the Fourier/Taylor series.
[Note that the integration usually involves quite straightforward
trig/polynomial functions, so we do not need NA to do it, but you will
usually need a computer to do all the arithmetic.]

The process corresponds roughly to trying to analyse sound
waves into fundamental frequencies and the first few harmonics. The
expectation is that as we do more work and include more and more
harmonics, the solution converges rapidly.

Very similar methods can be used for ODEs. Look up the
Rayleigh—Ritz and Galerkin methods.

lecture 20



