
Non-linear equations
Iterative methods

These generalise the basic idea we saw with Newton-Raphson. We
have some approximation to the solution, and we apply some process
[‘algorithm’] to the approximation in order to generate [with luck] a
better approximation. We go round and round [which is what ‘itera-
tion’ implies] until the approximation is ‘good enough’.

Mathematically, this is usually written as some sort of sequence:

xn +1 = g(xn)

for some function g related to f [for Newton-Raphson, it was
g(x) = x − f (x) / f ′(x)] and for some initial approximation x0 . For com-
puting purposes, you won’t need the sequence, we can just assign some
new value to x :

x → g(x)

[but using whatever notation your preferred language requires].

How to generate/invent the function g? Newton-Raphson is one way.
But basically, we can tweak f in any way we like from the form
f (x) = 0 into the form g(x) = x to give a potential iteration. It could be
as simple as adding x to both sides! But we can usually be more
inventive.

lecture 4

- 2 -

Examples

Wallis:

[The first four are obtained just by isolating one term of the
equation and ‘solving’ it for x ; the fifth is Newton-Raphson.]

x → (2x +5)1/3;

x → 2
1
� � (x3 − 5);

x → (2x +5) /x2;

x → √
�����������

2 + 5/x;

x → x −
3x2 − 2

x3 − 2x − 5
����������������� =

3x2 − 2
2x3 + 5
����������� .

Tan:

[Again, various obvious tweakings followed by Newton-Raphson.]

x → tan x ;

x → tan−1 x ;

x → 2
1
� � (x + tan x);

x → √
�����������

x tan x;

x → x −
sec2 x − 1
tan x − x
�	��������������� =

tan2 x
x sec2 x − tan x
� ������������������������� .

Try these! Start from reasonable values, such as 2 [Wallis] or 4.5
[Tan].

lecture 4

- 3 -

We can investigate convergence by assuming that g has a Taylor
series:

g(x) = g(p) + (x −p)g ′ (p) + 2
1� � (x −p)2g ′ ′ (p) +

If p is the root, such that g(p) = p , this gives

xn +1 = g(xn) = g(p) + (xn −p)g ′ (p) + 2
1� � (xn −p)2g ′ ′(p) + . . . ,

or

en +1 = g ′(p)en + 2
1� � g ′ ′ (p)en

2 + . . . ,

where en = xn − p is the error on the nth iteration.

So, it is good to have g ′ (p), g ′ ′ (p), . . . small, and bad to have
them large.

Special cases:

(a)
�
g ′ (p)

�
> 1: there is no convergence; small errors grow.�

g ′ (p)
�

= 1 is also Bad News.

(b) 0 <
�
g ′(p)

�
< 1: linear convergence [also called geometric or

first-order], as long as x0 is close enough to p [so that the trunca-
tion error 2

1� � g ′ ′ (p)e0
2 + . . . is not too large].

(c)
�
g ′ (p)

�
= 0: quadratic [or second-order] convergence as long as

x0 is close enough to p . The error is roughly squared [Good
News!] if it is small. Even better if g ′ ′(p) = 0.

lecture 4

