
Non-linear equations
Iterative methods [continued]

Diagrammatically, we can see what is happening in the case of first-
order convergence:

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

x0 x1 x2

For each value of x , we go up to the curve to find g(x); that value
replaces x , corresponding to going across the diagram until we hit the
line y = x , which gives us the next value of x .

If you try the same thing with g(x) steeper than 1, you see that
its graph crosses y = x from below, and the same construction takes
you further and further away. If you try with the slope of g(x) nega-
tive, you will find that the construction ‘spirals’ around the solution,
making a so-called ‘cobweb’ diagram; for small negative slope it
spirals in, for large negative slope it spirals out. Both of these con-
structions are worth drawing your own diagrams for!

Note that although the theory is about the value of g ′ (p), where p
is the root, in real life we don’t know p so can’t test this value directly.
We usually ‘suck it and see’; but in some cases it may be worth
evaluating g ′ (xn) once in a while, to see whether the method seems to
be working.

lecture 5

- 2 -

Special case:

In the case where
�
g ′ (x)

�
< 1 for all x , it is easy to see that, in the

previous diagram, the curve crosses the line once and once only. That
is, the equation g(x) = x has exactly one solution. [This is a topologi-
cal theorem—look up ‘contraction mapping’!] You won’t often spot
such cases, but it does mean that equations like x = 2 + sin (x) [and a
host of similar equations] have exactly one solution which we can
guarantee to find [though perhaps not quickly] by the obvious itera-
tion.

Convergence of Newton-Raphson

For Newton-Raphson,

x → g(x) = x −
f ′(x)
f (x)� ������� ,

we have

g ′(x) = 1 −
f ′ (x)2

f ′(x)2 − f (x) f ′ ′(x)� ����������������������������� =
f ′ (x)2

f (x) f ′ ′ (x)�����������������

[using the quotient rule], so that g ′(p) = 0 at the root, f (p) = 0, pro-
vided that f ′ (p) ≠ 0. So N-R usually has quadratic convergence, once
it gets near the root. But beware the special case, which will happen
if f has a multiple root at p , and will very nearly happen in the cases
we talked about earlier where f ′ happens to be very small.

lecture 5

- 3 -

Three cases of historical interest

(a) If we try to solve the quadratic x2 = a , then Newton-Raphson
gives us:

x → x −
2x

x2 − a
��������� = 2

1
� � (x + a /x).

This is the actual way most calculators/computers find square
roots, as it converges very rapidly from any reasonable starting
value. E.g. to find √

� �

2, so x → 2
1
� � (x + 2/x), we find

1 → 1.5 → 1.4166666667 → 1.4142156863 → 1.4142135624

[correct to my calculator accuracy]. Exercise: Try xn = a for
values of n other than 2.

(b) If 1/x = a , then Newton-Raphson gives

x → x −
−x −2

1/x − a
����������� = 2x − ax2 = x× (2−ax).

This gives a way of finding reciprocals without dividing! Early
computers took ages to divide, so a few times around N-R from a
decent starting value was significantly faster. Then computer
chips got better at dividing. But more recently, RISC chips often
can’t divide again, and this method has come back into use on
some computers.

(c) If you solve the equation x3 = 1 using N-R, and yes I know we all
know what the answer is, then it converges for almost all start-
ing values x0 . If you do this with complex values of x0, then it
sometimes converges to x = 1, but also sometimes to the complex
roots, x = − (1 ± √

� �

3 i) /2. If you colour the starting point by which
root it converges to, you get a pretty fractal picture in the Argand
diagram.

lecture 5

- 4 -

Aitken’s Device

This is a ‘trick’ to make slow convergence faster. If we have first-order
convergence, then we have

x0 = p + h ; x1 ≈ p + rh ; x2 ≈ p + r2h,

where p is the [unknown] root, h is the [unknown] error, and r is the
[unknown] rate of convergence, r = g ′ (p). But we have three approxi-
mate equations for these three unknowns! We can solve [approxi-
mately] for p :

h = x0 − p ; rh ≈ x1 − p ; r2h ≈ x2 − p ;

so

(p − x0)× (p − x2) ≈ (p − x1)2 [≈ r2h2].

That is,

p2 − (x0 + x2)p + x0x2 ≈ p2 − 2x1p + x1
2 ,

or

p ≈
x0 + x2 − 2x1

x0x2 − x1
2

� ��������������������� .

If we take x3 to be given by this formula instead of by x3 = g(x2), then
resume the iteration to find x4 , x5 normally, then x6 by this ‘Aitken’
formula, and so on, then, lo and behold, we get quadratic convergence.

Note that we get quadratic convergence even if r > 1, that is,
even if the first-order process is diverging! [This sounds too good to be
true, and sadly it often is, but it’s worth trying.] Oh, something to
watch is that we get serious cancellation errors if all the xi are close
together, so it’s better at getting you close to the root than at finding it
with great accuracy.

lecture 5

- 5 -

Final word on iterations:

Don’t get hung up on doing iterations exactly. The whole point is
that they [should] converge from more-or-less anywhere sensible. It
doesn’t matter if you make a mistake, as long as it’s not too gross, and
as long as you don’t do it too often; blunders are self-correcting. You
can work to 1dp, then 2dp, then 3, 4, 5, . . . as the results converge, in
case you are having to type in numbers to your calculator or computer.
You don’t have to ‘wait’ for a process to converge—if you can ‘guess’
where it’s heading [for example, if it seems to be oscillating about
some value and only slowly converging], just go there and try again.
It’s a severely practical exercise!

lecture 5

