
Difference Tables
In pre-computer days, these were the principal tool of numerical work;
indeed, their automation was the ‘inspiration’ for Babbage’s ‘Differ-
ence Engine’ and ‘Analytical Engine’, now widely regarded as the
[mid-19th C] forerunner of the whole idea of automatic computing.
They are no longer used ‘in anger’ in pure numerical work; but they
are still very useful in preliminary analysis [especially by pencil and
paper] of experimental results.

Start with an example. Here is the Wallis polynomial,
W(x) = x3 − 2x − 5, for x = −2, −1, . . . , 8.

x W(x)
� �������������������������������������������������������

–2 –9
5

–1 –4 –6
–1 6

0 –5 0 0
–1 6

1 –6 6 0
5 6

2 –1 12 0
17 6

3 16 18 0
35 6

4 51 24 0
59 6

5 110 30 0
89 6

6 199 36 0
125 6

7 324 42
167

8 491

[After the W(x) column, each number is the difference between the
number left and below and the number left and above.]
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Notes:

(a) In this particular case, the third column of differences, the ‘third
differences’, are constant; so fourth differences are zero, as are
fifth, sixth, etc. This is much the same result as that, for this
particular function, the third derivative is constant, and fourth
and higher derivatives zero.

(b) If we know any of the diagonal lines in the table, or enough of the
table to construct one, then we can fill in the rest of the table.
This is, in fact, the easiest way, in general, to build up a table of
polynomial values For example, W(9) = 491 + 167 + 42 + 6 = 706.

(c) In this table, we had a cubic polynomial, and we tabulated it at
intervals [for x ] of 1 between rows. Exercise: Verify by example
that if we difference any polynomial, at any interval [as long as it
is the same throughout the table†] each successive column gives
the value of a polynomial of one lower degree, until the nth
differences are constant and further differences zero, where n is
the degree of the polynomial.

(d) But the converse of this result is not true. Things that difference
[ultimately] to zero are not necessarily polynomial. Specifically,
we can take any function G(x) whatsoever; then G(x) sin πx is
zero whenever x is an integer, and so W(x) + G(x) sin πx would
have had exactly the same table, but is in general a quite differ-
ence function. To make progress, we need to assume that the
table ‘fairly represents’ the values of [in this case] W(x).

(e) But if we ‘play fair’, then we can get more from a difference table
than you might expect:

__________________________

† It is possible, but much, much harder, to do NA on tables that are not at
constant interval. You really, really do not want to know. [If you do, look up
‘divided differences’.]

lecture 6



- 3 -

Example

Here is a table of values of sin x , at a ‘tabular interval’ of 0.2 in the
values of x .

x sin x
� �����������������������������������������������������������������������������������������������������������������������������

0.0 0.00000
19867

0.2 0.19867 –792
19075 –761

0.4 0.38942 –1553 64
17522 –697 22

0.6 0.56464 –2250 86 10
15272 –611 32

0.8 0.71736 –2861 118 –19
12411 –493 13

1.0 0.84147 –3354 131 5
9057 –362 18

1.2 0.93204 –3716 149 –9
5341 –213 9

1.4 0.98545 –3929 158 –13
1412 –55 –4

1.6 0.99957 –3984 154
–2572 99

1.8 0.97385 –3885
–6457

2.0 0.90928

(f) By convention, we write everything after the actual values of
sin x as an integer; this saves lots of writing of 0.0000, and
makes the arithmetic easier, as long as you write out the table
neatly! You just have to remember to put the decimal point back
in when you produce actual function values.

(g) Note that the differences [sort-of] get smaller as we go to second,
third, fourth differences—especially remembering that they are
really 0.000-something—but they are never zero. This is partly
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because they really aren’t zero [‘truncation error’], and if we did
everything exactly they still wouldn’t be zero; but much more
because of rounding errors. See the next table:

�����������������������������������������������������������������������

2
1
� �

–1
− 2

1
� � 2

1 –4
2
1
� � –2 8

–1 4 –16
− 2

1
� � 2 –8 32

1 –4 16
2
1
� � –2 8 –32

–1 4 –16
− 2

1
� � 2 –8

1 –4
2
1
� � –2

–1
− 2

1
� �

�����������������������������������������������������������������������

This shows how an alternating error of half a unit in the last
decimal—the worst possible rounding in a correct table—builds
up by powers of two.

Errors as large as ± 2n −1 in the nth differences could be due
entirely to chance rounding errors. You should completely ignore
values smaller than this—they are just ‘noise’, and using them
will make your results worse rather than better.

In the case of the sine table, we see that fifth differences are not
[all] as small as ± 16, but sixth differences [in italics] are all
smaller than ± 32. Over this range of values of x and for this
tabular interval [0.2], sin x to 5dp behaves very like a polynomial
of degree 5; this observation ‘guides’ our choice of further numeri-
cal techniques on these results.
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(h) If some function [eg the result of an experiment] does not behave
like a polynomial, what then? Three possible causes: (i) The
tabular interval is too large, so the table does not ‘capture’ the
function adequately. [Bit late if this is an expensive experi-
ment!] You really, really do not have the information to do good
numerical work on these figures. (ii) The function really is not a
polynomial. Almost all numerical methods are designed to work
on polynomials; you really need to re-think the function before
continuing. [Eg, take logs to get rid of ‘exponential’ behaviour.]
(iii) One or more of the values were mis-calculated or mis-
transcribed, eg when copying experimental results using pencil-
and-paper. Moral: get these processes automated! Luckily, this
last case can easily be detected, and often corrected:

�������������������������������������������������������������

0 0 1
0 0 1

0 1 –5
0 1 –4

1 –3 10
1 –2 6

–1 3 –10
0 1 –4

0 –1 5
0 0 1

0 0 –1
�������������������������������������������������������������

The table shows a ‘blunder’ of size 1 in a function that is other-
wise zero. Note that the table shows a characteristic pattern of
binomial coefficients of alternating sign. If you make a mistake,
then the table you get is the table you should have plus some
multiple of the table above.

Exercise: Make the ‘blunder’ sin 1 = 0.84174 in the sine table, and
re-calculate the table [not all of it!]. Note how easy it is to spot the
mistake [transposing digits], to see how big the mistake is [by com-
parison with the above], and therefore to correct it. Moral: It is
always worth differencing tables of experimental results.
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