Quadrature

As previously noted, this is the ‘fancy’ NA term for [definite] integra-
tion. In the simple cases, we are working out an integral such as
fab f(x)dx, where f is some given function. In more advanced work, we

would look at various sorts of ‘improper’ integral, such as those where
either or both limit is infinite, and at integrals with a ‘weight’ func-

tion, such as [ f(x)e *dx. We would also be looking at multiple
0

integrals, contour integrals, surface integrals, and so on.

All of the standard methods rely basically on approximating f by
a polynomial, and integrating that instead of f. Ideally, the approxi-
mation has low degree—quadratic or cubic, occasionally quartic. Do
not be tempted to use high-degree polynomials; these are almost

always very unstable, and good results depend on f being extremely
well-behaved.

Never try to use quadrature on functions that are not well-
behaved. If f does not ‘look like’ a polynomial, then integrating it as
though it does is simply not going to work. Not never, not nohow.

Anyway, this motivates us to study first how to approximate

functions by polynomials. This will give us an ‘interpolating’ polyno-
mial, which can be used to ‘replace’ f in suitable numerical processes.
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Interpolation

This is a major subject in its own right. We can try to fit a polynomial
[or other function, in general] to (a) a function and its derivatives at a
point; (b) a set of data points; or (¢) some known function [and
perhaps its derivatives] over a range of x-values. Case (a) is about the
Taylor series of f, and is not relevant to this module. Case (c¢) is also
an exercise in calculus; it is relevant, but we’re not going to do it here.

So we concentrate on (b), the problem of fitting a curve to some
data points. Note that this is closely related to methods such as ‘least
squares’ for fitting lines or curves to experimental data. Again, there
are lots of possible criteria for the polynomial. We can try to make the
curve go through some or all of the points; we can try to make it run
as close as possible to some or all of the points; ‘as close as possible’
could be interpreted as lowest sum of squared error [‘least squares’],
or as minimised maximum deviation, or in various other ways. In this
module, we look only at the problem of making a low-degree polyno-
mial go through certain points.

To fix ideas, let us look at the Wallis polynomial again:

x o 1 2 3 4
Wx) | -5 -6 -1 16 51

There are two basic ways to proceed; they give the same answer, so
you can choose which you prefer.
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Firstly, note that, for example, the polynomial
(x-0)(x-1)(x-2)(x—4)

[No (x—-3)!] is, by construction, zero when x is 0, 1, 2 or 4. When
x = 3, it has the value

(3-0)(3-1)(3-2)(3-4) = -6.
So the [quartic, in this case] polynomial
—16(x-0)(x-1)(x—-2)(x—4) /6 = — 8x* + 8853 — 11242 4 644

has the right value of W(3) when x = 3 and is zero at the other given
data points. If we write down the corresponding [quartic] polynomials
for the other four data points, and add up all five polynomials, then at
each data point four or them will be zero and the fifth will have the
right value; so it will have the right value in total. Exercise: do this
[perhaps using Maple!] and verify that you get the Wallis cubic out of
it!
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The second way works by interpolating a few points at a time and
combining them. For example, the interpolating quadratic for x = 0,
1, 2 is 3x? - 4x — 5, while that for x = 1, 2, 3 is 6x* — 13x + 1 [left as an
exercise!]. So to get the interpolating cubic for x = 0, 1, 2, 3, we have
to ‘fade out’ the first quadratic and ‘fade in’ the second as x changes
from 0 to 3. The fading out is done by multiplying the first quadratic
by (3-x)/3 [which is 1 when x = 0 and 0 when x = 3]; and the fading
in by multiplying the second quadratic by (x-0)/3 [which is 0 when
x = 0 and 1 when x = 3]. So the interpolating cubic is

1(3-x)(3x%-4x-5)+ 2 (x-0)(6x?-13x+1) = x> -2x -5

[now there’s a surprise!]. We start the process off with the ‘interpolat-
ing constants’, —5, —6 and so on that are each right at one data point;
we fade them in and out to get the interpolating linear ‘curves’
between adjacent pairs of points; fade them in and out to get quadrat-
ics between triples, then cubics, quartics and so on.

The total work done will be the same in both methods; but the
second method gives useful lower-order polynomials for parts of the
function as the higher ones are built up. You can save yourself lots of
hard work by using Maple; see the interp command [the help for
which will direct you to ‘more modern’ equivalents, and to lots of other
interpolation techniques].

Note that, for example, the interpolating cubic for

x| 0 0.1 0.2 0.3

sinx | 0.0000000000 0.0998334166 0.1986693308 0.2955202067

is, according to Maple,
1.000029893 x — 0.00049833998 x% — 0.1645892834 13,

which is somewhat different from the Taylor series, x — sx3 to the

same degree. But the interpolated polynomial gives sin0.25 =
0.2474046194, which is much nearer the actual value of 0.2474039593
than the Taylor series, which gives 0.2473958333.
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Interpolating quadratics, and Simpson’s Rule

The most useful interpolation for quadrature is the quadratic
through three equally-spaced points. Essentially, what Simpson did
was to go through the above process, but in full generality; then he
integrated the result. The algebra is done once, then we can re-use
and re-use it indefinitely.

Specifically, suppose we are integrating between a and b; that
¢ = 2(a+b) is the mid-point between a and b; and that c-a =
b-c = h. Then we have the table:

X | a=c-h C b=c+h
(0 [ f(a f(c) f(b)
with interpolating quadratic ..., well, something quite messy:

LA 72 ([ f@)+f(B)-2f(c)](x —¢)® = k[ f(a) - f(B)](x —c) + 2h>f(c))

[left in terms of A~ and x —c for ‘symmetry’]. Now we need to integrate
that for x between c—A and c+A; but we only need to do it once, and it
is only a quadratic. The result [you can use Maple!] is

fab f)dx = 3 h(f(a)+4f(c)+ (D)),

our old friendly neighbourhood Simpson’s Rule.
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