HG3MCE—Computerised Mathematical Techniques in Engineering

Problem Class 3—Solutions

1. (a) Straight exercise in Simpson's Rule. Let $f(x) = \exp(-e^{-x})$. Then we can build up a table [all numbers to calculator accuracy]:

ends	f(0) + f(1)	1.060080069
odds	f(0.5)	0.5452392119
I_2	(ends + 4 odds)/6	0.5401728195
evens	old odds	0.5452392119
odds	f(0.25) + f(0.75)	1.082480986
I_4	(ends + 4 odds + 2 evens)/12	0.5400402029
evens	old odds + old evens	1.627720198
odds	f(0.125) + f(0.375) + f(0.625) + f(0.875)	2.161314135
I_8	(ends + 4 odds + 2 evens)/24	0.5400323753

 I_8 is clearly correct to 5dp; indeed, we might well have risked simply extrapolating between I_4 and I_2 [giving 0.5400313619]. Applying Richardson extrapolation anyway gives $I \approx 0.5400318535$ or 0.5400 to 4dp. Actually $I \approx 0.5400318623$.

(b) If you simply charge through Simpson's Rule for this, you get into a mess because $\log x \cos x \to -\infty$ as $x \to 0$. Two suggestions: (i) Write $\log x \cos x = \log x (\cos x - 1) + \log x$. Now the first term is relatively well-behaved near 0 and the second term can be integrated directly. (ii) Integrate by parts: $\int \log x \cos x \, dx = \log x \sin x - \int x^{-1} \sin x \, dx$. Note that the 'bad behaviour' is now concentrated in the integrated term, though at least $\log x \sin x \to 0$. On the other hand, $x^{-1} \sin x$ is, possibly despite appearances, well-behaved for all x—look at its power-series expansion. Everything is now easy, details left to you. Don't forget that $\log x$ is to base e and that trig functions should use radians! You should get -0.9192 to $5 \log x$.

2. For example:

2	1	2	3	1	0	0	0	(1)
0	1	-1	-1	0	1	0	0	(2)
1	0	3	4	0	0	1	0	(3)
2	2	1	3	0	0	0	1	(4)
0	1	-4	-5	1	0	-2	0	$(5) = (1) - 2 \times (3)$
0	2	-5	-5	0	0	-2	1	$(6) = (4) - 2 \times (3)$
0	0	3	4	-1	1	2	0	(7) = (2) - (5)
0	0	3	5	-2	0	2	1	$(8) = (6)-2\times(5)$
0	0	0	1	-1	-1	0	1	(9) = (8) - (7)
0	0	3	0	3	5	2	-4	$(10) = (7) - 4 \times (9)$
0	0	1	0	1	5/3	2/3	-4/3	(11) = (10)/3
0	1	0	0	0	5/3	2/3	-1/3	$(12) = (5) + 4 \times (11) + 5 \times (9)$
1	0	0	0	-1	1	2	0	$(13) = (3) - 3 \times (11) - 4 \times (9)$
								[Or = (3) - (7)]

We can read off the inverse from equations 13, 12, 11 and 9 [in that order].